scholarly journals A Graves’ Disease-Associated Kozak Sequence Single-Nucleotide Polymorphism Enhances the Efficiency of CD40 Gene Translation: A Case for Translational Pathophysiology

Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2684-2691 ◽  
Author(s):  
Eric M. Jacobson ◽  
Erlinda Concepcion ◽  
Taiji Oashi ◽  
Yaron Tomer

Abstract We analyzed the mechanism by which a Graves’ disease-associated C/T polymorphism in the Kozak sequence of CD40 affects CD40 expression. CD40 expression levels on B cells in individuals with CT and TT genotypes were decreased by 13.3 and 39.4%, respectively, compared with the levels in CC genotypes (P = 0.012). Similarly, Rat-2 fibroblasts transfected with T-allele cDNA expressed 32.2% less CD40 compared with their C-allele-transfected counterparts (P = 0.004). Additionally, an in vitro transcription/translation system showed that the T-allele makes 15.5% less CD40 than the C-allele (P < 0.001), demonstrating that the effect of the single-nucleotide polymorphism (SNP) on CD40 expression is at the level of translation. However, the SNP did not affect transcription, because the mRNA levels of CD40, as measured by quantitative RT-PCR, were independent of genotype. Therefore, our results may suggest that the C allele of the CD40 Kozak SNP, which is associated with Graves’ disease, could predispose to disease by increasing the efficiency of translation of CD40 mRNA.

2004 ◽  
Vol 61 (2) ◽  
pp. 269-272 ◽  
Author(s):  
Joanne M. Heward ◽  
Matthew J. Simmonds ◽  
Jackie Carr-Smith ◽  
Helen Foxall ◽  
Jayne A. Franklyn ◽  
...  

Thyroid ◽  
2006 ◽  
Vol 16 (5) ◽  
pp. 443-446 ◽  
Author(s):  
Yoshiyuki Ban ◽  
Teruaki Tozaki ◽  
Matsuo Taniyama ◽  
Motowo Tomita ◽  
Yoshio Ban

2004 ◽  
Vol 182 (3) ◽  
pp. 479-484 ◽  
Author(s):  
F Basolo ◽  
R Giannini ◽  
P Faviana ◽  
G Fontanini ◽  
A Patricelli Malizia ◽  
...  

The expression of Fas in thyroid tumours and Graves' disease was analysed by mRNA transcript expression. As compared with unaffected thyroid tissue, Fas expression was enhanced in Graves' disease, adenomas, and papillary and follicular carcinomas. This pattern was also reflected in immunohistochemical studies. The PCR single-strand conformational polymorphism (SSCP) method and DNA sequencing were used to analyse Fas exons 1-9. The study was carried out on five different histotypes of thyroid tumours (n=93) and tissue from Graves' disease patients. As compared with a group of healthy blood donors (n=64), a significant association (P=0.006) emerged between papillary thyroid carcinoma and a silent single nucleotide polymorphism (SNP, 988C-->T) in exon 7 of the Fas gene. Other forms of thyroid pathology were not associated with the above polymorphism. Patients with neoplasia showed the same SNP in tumour tissue, in the unaffected contralateral thyroid lobe, and in peripheral blood cells. Thus, the 988C-->T polymorphism appeared to be of germ-line origin.


2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Abu Naser Mohon ◽  
Didier Menard ◽  
Mohammad Shafiul Alam ◽  
Kevin Perera ◽  
Dylan R Pillai

Abstract Background Artemisinin-resistant malaria (ARM) remains a significant threat to malaria elimination. In the Greater Mekong subregion, the prevalence of ARM in certain regions has reached greater than 90%. Artemisinin-resistant malaria is clinically identified by delayed parasite clearance and has been associated with mutations in the propeller domain of the kelch 13 gene. C580Y is the most prevalent mutation. The detection of ARM currently relies on labor-intensive and time-consuming methods such as clinical phenotyping or in vitro susceptibility testing. Methods We developed a novel single-nucleotide polymorphism loop mediated isothermal amplification (SNP-LAMP) test method for the detection of the C580Y mutation using a novel primer design strategy. Results The SNP-LAMP was 90.0% sensitive (95% confidence interval [CI], 66.9–98.3) and 91.9% specific (95% CI, 82.6–96.7) without knowledge of the parasite load and was 100% sensitive (95% CI, 79.9–100) and 97.3% specific (95% CI, 89.7–99.5) when the parasitemia was within the assay dynamic range. Tests with potential application near-to-patient such as SNP-LAMP may be deployed in low- and middle-income and developed countries. Conclusions Single-nucleotide polymorphism LAMP can serve as a surveillance tool and guide treatment algorithms for ARM in a clinically relevant time frame, prevent unnecessary use of additional drugs that may drive additional resistance, and avoid longer treatment regimens that cause toxicity for the patient.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michelle A. Land ◽  
Holly L. Chapman ◽  
Brionna D. Davis-Reyes ◽  
Daniel E. Felsing ◽  
John A. Allen ◽  
...  

Abstract A non-synonymous single nucleotide polymorphism of the human serotonin 5-HT2C receptor (5-HT2CR) gene that converts a cysteine to a serine at amino acid codon 23 (Cys23Ser) appears to impact 5-HT2CR pharmacology at a cellular and systems level. We hypothesized that the Cys23Ser alters 5-HT2CR intracellular signaling via changes in subcellular localization in vitro. Using cell lines stably expressing the wild-type Cys23 or the Ser23 variant, we show that 5-HT evokes intracellular calcium release with decreased potency and peak response in the Ser23 versus the Cys23 cell lines. Biochemical analyses demonstrated lower Ser23 5-HT2CR plasma membrane localization versus the Cys23 5-HT2CR. Subcellular localization studies demonstrated O-linked glycosylation of the Ser23 variant, but not the wild-type Cys23, may be a post-translational mechanism which alters its localization within the Golgi apparatus. Further, both the Cys23 and Ser23 5-HT2CR are present in the recycling pathway with the Ser23 variant having decreased colocalization with the early endosome versus the Cys23 allele. Agonism of the 5-HT2CR causes the Ser23 variant to exit the recycling pathway with no effect on the Cys23 allele. Taken together, the Ser23 variant exhibits a distinct pharmacological and subcellular localization profile versus the wild-type Cys23 allele, which could impact aspects of receptor pharmacology in individuals expressing the Cys23Ser SNP.


2006 ◽  
Vol 72 (5) ◽  
pp. 3785-3787 ◽  
Author(s):  
Jan Rupp ◽  
Werner Solbach ◽  
Jens Gieffers

ABSTRACT Single-nucleotide polymorphisms (SNPs) are targets to discriminate intraspecies diversity of bacteria and to correlate a genotype with a potential pathotype. Quantification of polygenotypic populations supports this task for in vitro and in vivo applications. We present a novel assay capable of quantifying mixtures of two genotypes differing by only one SNP.


2006 ◽  
Vol 80 (11) ◽  
pp. 5321-5326 ◽  
Author(s):  
Eva Gottwein ◽  
Xuezhong Cai ◽  
Bryan R. Cullen

ABSTRACT MicroRNAs (miRNAs) are a class of ∼22-nucleotide noncoding RNAs that inhibit the expression of specific target genes at the posttranscriptional level. Recently, 11 miRNAs encoded by the pathogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) were cloned from latently infected cells. While the expression of these miRNAs has been confirmed by Northern analysis, their ability to inhibit target gene expression has not been demonstrated. We have devised a novel assay for miRNA function that uses lentiviral indicator vectors carrying two perfectly complementary target sites for each given miRNA in the 3′ untranslated region of the Renilla luciferase gene. This assay allowed us to demonstrate the activity of each viral miRNA upon cotransduction of cells with the Renilla luciferase indicator vector together with a firefly luciferase control vector. In KSHV-infected BC-1 and BCBL-1 cells, but not uninfected control cells, Renilla luciferase expression was selectively reduced up to 10-fold. Interestingly, one of the viral miRNAs (miR-K5) exhibited much higher activity in BC-1 cells than in BCBL-1 cells. Sequence analysis of both viral genomes revealed a single nucleotide polymorphism in the miR-K5 precursor stem-loop, which inhibits the expression of mature miR-K5 in BCBL-1 cells. We show that the primary miR-K5 sequence present in BCBL-1 results in diminished processing by Drosha both in vivo and in vitro. This is the first report of a naturally occurring sequence polymorphism in an miRNA precursor that results in reduced processing and therefore lower levels of mature miRNA expression and function.


Sign in / Sign up

Export Citation Format

Share Document