scholarly journals Developmental and Tissue-Specific Involvement of Peroxisome Proliferator-Activated Receptor-α in the Control of Mouse Uncoupling Protein-3 Gene Expression

Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4695-4704 ◽  
Author(s):  
Neus Pedraza ◽  
Meritxell Rosell ◽  
Joan Villarroya ◽  
Roser Iglesias ◽  
Frank J. Gonzalez ◽  
...  

Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.

2004 ◽  
Vol 24 (20) ◽  
pp. 9079-9091 ◽  
Author(s):  
Janice M. Huss ◽  
Inés Pineda Torra ◽  
Bart Staels ◽  
Vincent Giguère ◽  
Daniel P. Kelly

ABSTRACT Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRα have not been well defined. To identify ERRα-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRα. ERRα upregulated a subset of PGC-1α target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRα−/− mice. Consistent with the gene expression results, ERRα increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRα are known targets for the nuclear receptor PPARα, and therefore, the interaction between these regulatory pathways was explored. ERRα activated PPARα gene expression via direct binding of ERRα to the PPARα gene promoter. Furthermore, in fibroblasts null for PPARα and ERRα, the ability of ERRα to activate several PPARα targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1α was also shown to activate ERRα gene expression. We conclude that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.


2005 ◽  
Vol 386 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Gemma SOLANES ◽  
Neus PEDRAZA ◽  
Verónica CALVO ◽  
Antonio VIDAL-PUIG ◽  
Bradford B. LOWELL ◽  
...  

The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle.


2004 ◽  
Vol 287 (5) ◽  
pp. E878-E887 ◽  
Author(s):  
Melissa A. Stavinoha ◽  
Joseph W. RaySpellicy ◽  
Mary L. Hart-Sailors ◽  
Harry J. Mersmann ◽  
Molly S. Bray ◽  
...  

Cardiac and skeletal muscle both respond to elevated fatty acid availability by increasing fatty acid oxidation, an effect mediated in large part by peroxisome proliferator-activated receptor-α (PPARα). We hypothesized that cardiac and skeletal muscle alter their responsiveness to fatty acids over the course of the day, allowing optimal adaptation when availability of this substrate increases. In the current study, pyruvate dehydrogenase kinase 4 ( pdk4) was utilized as a representative PPARα-regulated gene. Opposing diurnal variations in pdk4 expression were observed in cardiac and skeletal muscle isolated from the ad libitum-fed rat; pdk4 expression peaked in the middle of the dark and light phases, respectively. Elevation of circulating fatty acid levels by high-fat feeding, fasting, and streptozotocin-induced diabetes increased pdk4 expression in both heart and soleus muscle. Highest levels of induction were observed during the dark phase, regardless of muscle type or intervention. Specific activation of PPARα with WY-14643 rapidly induced pdk4 expression in heart and soleus muscle. Highest levels of induction were again observed during the dark phase. The same pattern of induction was observed for the PPARα-regulated genes malonyl-CoA decarboxylase and uncoupling protein 3. Investigation into the potential mechanism(s) for these observations exposed a coordinated upregulation of transcriptional activators of the PPARα system during the night, with a concomitant downregulation of transcriptional repressors in both muscle types. In conclusion, responsiveness of cardiac and skeletal muscle to fatty acids exhibits a marked diurnal variation. These observations have important physiological and pathophysiological implications, ranging from experimental design to pharmacological treatment of patients.


2007 ◽  
Vol 32 (5) ◽  
pp. 884-894 ◽  
Author(s):  
Sheila R. Costford ◽  
Erin L. Seifert ◽  
Véronic Bézaire ◽  
Martin F. Gerrits ◽  
Lisa Bevilacqua ◽  
...  

Despite almost a decade of research since the identification of uncoupling protein-3 (UCP3), the molecular mechanisms and physiological functions of this mitochondrial anion carrier protein are not well understood. Because of its highly selective expression in skeletal muscle and the existence of mitochondrial proton leak in this tissue, early reports proposed that UCP3 caused a basal proton leak and increased thermogenesis. However, gene expression data and results from knockout and overexpression studies indicated that UCP3 does not cause basal proton leak or physiological thermogenesis. UCP3 expression is associated with increases in circulating fatty acids and in fatty acid oxidation (FAO) in muscle. Fatty acids are also well recognized as activators of the prototypic UCP1 in brown adipose tissue. This has led to hypotheses implicating UCP3 in mitochondrial fatty acid translocation. The corresponding hypothesized physiological roles include facilitated FAO and protection from the lipotoxic effects of fatty acids. Recent in vitro studies of physiological increases in UCP3 in muscle cells demonstrate increased FAO, and decreased reactive oxygen species (ROS) production. Detailed mechanistic studies indicate that ROS or lipid by-products of ROS can activate a UCP3-mediated proton leak, which in turn acts in a negative feedback loop to mitigate ROS production. Altogether, UCP3 appears to play roles in muscle FAO and mitigated ROS production. Future studies will need to elucidate the molecular mechanisms underlying increased FAO, as well as the physiological relevance of ROS-activated proton leak.


2004 ◽  
Vol 33 (2) ◽  
pp. 533-544 ◽  
Author(s):  
M J Watt ◽  
R J Southgate ◽  
A G Holmes ◽  
M A Febbraio

Fatty acids are an important ligand for peroxisome proliferator-activated receptor (PPAR) activation and transcriptional regulation of metabolic genes. To examine whether reduced plasma free fatty acid (FFA) availability affects the mRNA content of proteins involved in fuel metabolism in vivo, the skeletal muscle mRNA content of various transcription factors, transcriptional coactivators and genes encoding for lipid regulatory proteins were examined before and after 3 h of cycle exercise with (NA) and without (CON) pre-exercise ingestion of nicotinic acid (NA). NA resulted in a marked (3- to 6-fold) increase (P<0.05) in PPARα, PPARδ and PPAR coactivator 1α (PGC1α) mRNA, but was without effect on nuclear respiratory factor-1 and Forkhead transcription factor, fatty acid transcolase/CD36, carnitine palmitoyl transferase 1, hormone sensitive lipase (HSL) and pyruvate dehydrogenase kinase 4. Exercise in CON was associated with increased (P<0.05) PPARα, PPARδ and PGC1α mRNA, which was similar in magnitude to levels observed with NA at rest. Exercise was generally without effect on the mRNA content of lipid regulatory proteins in CON and did not affect the mRNA content of the measured subset of transcription factors, transcriptional co-activators and lipid regulatory proteins during NA. To determine the possible mechanisms by which NA might affect PGC1α expression, we measured p38 MAP kinase (MAPK) and plasma epinephrine. Phosphorylation of p38 MAPK was increased (P<0.05) by NA treatment at rest, and this correlated (r2=0.84, P<0.01) with increased PGC1α. Despite this close relationship, increasing p38 MAPK in human primary myotubes was without effect on PGC1α mRNA content. Plasma epinephrine was elevated (P<0.05) by NA at rest (CON: 0.27±0.06, NA: 0.72±0.11 nM) and throughout exercise. Incubating human primary myotubes with epinephrine increased PGC1α independently of changes in p38 MAPK phosphorylation. Hence, despite the fact that NA ingestion decreased FFA availability, it promoted the induction of PPARα/δ and PGC1α gene expression to a similar degree as prolonged exercise. We suggest that the increase in PGC1α may be due to the elevated plasma epinephrine levels. Despite these changes in transcription factors/coactivators, the mRNA content of lipid regulatory proteins was generally unaffected by plasma FFA availability.


Sign in / Sign up

Export Citation Format

Share Document