Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids

2004 ◽  
Vol 287 (5) ◽  
pp. E878-E887 ◽  
Author(s):  
Melissa A. Stavinoha ◽  
Joseph W. RaySpellicy ◽  
Mary L. Hart-Sailors ◽  
Harry J. Mersmann ◽  
Molly S. Bray ◽  
...  

Cardiac and skeletal muscle both respond to elevated fatty acid availability by increasing fatty acid oxidation, an effect mediated in large part by peroxisome proliferator-activated receptor-α (PPARα). We hypothesized that cardiac and skeletal muscle alter their responsiveness to fatty acids over the course of the day, allowing optimal adaptation when availability of this substrate increases. In the current study, pyruvate dehydrogenase kinase 4 ( pdk4) was utilized as a representative PPARα-regulated gene. Opposing diurnal variations in pdk4 expression were observed in cardiac and skeletal muscle isolated from the ad libitum-fed rat; pdk4 expression peaked in the middle of the dark and light phases, respectively. Elevation of circulating fatty acid levels by high-fat feeding, fasting, and streptozotocin-induced diabetes increased pdk4 expression in both heart and soleus muscle. Highest levels of induction were observed during the dark phase, regardless of muscle type or intervention. Specific activation of PPARα with WY-14643 rapidly induced pdk4 expression in heart and soleus muscle. Highest levels of induction were again observed during the dark phase. The same pattern of induction was observed for the PPARα-regulated genes malonyl-CoA decarboxylase and uncoupling protein 3. Investigation into the potential mechanism(s) for these observations exposed a coordinated upregulation of transcriptional activators of the PPARα system during the night, with a concomitant downregulation of transcriptional repressors in both muscle types. In conclusion, responsiveness of cardiac and skeletal muscle to fatty acids exhibits a marked diurnal variation. These observations have important physiological and pathophysiological implications, ranging from experimental design to pharmacological treatment of patients.

Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4695-4704 ◽  
Author(s):  
Neus Pedraza ◽  
Meritxell Rosell ◽  
Joan Villarroya ◽  
Roser Iglesias ◽  
Frank J. Gonzalez ◽  
...  

Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.


2004 ◽  
Vol 287 (5) ◽  
pp. E888-E895 ◽  
Author(s):  
Melissa A. Stavinoha ◽  
Joseph W. RaySpellicy ◽  
M. Faadiel Essop ◽  
Christophe Graveleau ◽  
E. Dale Abel ◽  
...  

The physiological role of mitochondrial thioesterase 1 (MTE1) is unknown. It was proposed that MTE1 promotes fatty acid (FA) oxidation (FAO) by acting in concert with uncoupling protein (UCP)3. We previously showed that ucp3 is a peroxisome proliferator-activated receptor-α (PPARα)-regulated gene, allowing induction when FA availability increases. On the assumption that UCP3 and MTE1 act in partnership to increase FAO, we hypothesized that mte1 is also a PPARα-regulated gene in cardiac and skeletal muscle. Using real-time RT-PCR, we characterized mte1 gene expression in rat heart and soleus muscles. Messenger RNA encoding for mte1 was 3.2-fold higher in heart than in soleus muscle. Cardiac mte1 mRNA exhibited modest diurnal variation, with 1.4-fold higher levels during dark phase. In contrast, skeletal muscle mte1 mRNA remained relatively constant over the course of the day. High-fat feeding, fasting, and streptozotocin-induced diabetes, interventions that increase FA availability, muscle PPARα activity, and muscle FAO rates, increased mte1 mRNA in heart and soleus muscle. Conversely, pressure overload and hypoxia, interventions that decrease cardiac PPARα activity and FAO rates, repressed cardiac mte1 expression. Specific activation of PPARα in vivo through WY-14643 administration rapidly induced mte1 mRNA in cardiac and skeletal muscle. WY-14643 also induced mte1 mRNA in isolated adult rat cardiomyocytes dose dependently. Expression of mte1 was markedly lower in hearts and soleus muscles isolated from PPARα-null mice. Alterations in cardiac and skeletal muscle ucp3 expression mirrored that of mte1 in all models investigated. In conclusion, mte1, like ucp3, is a PPARα-regulated gene in cardiac and skeletal muscle.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 375-382 ◽  
Author(s):  
Sandrine Gremlich ◽  
Christopher Nolan ◽  
Raphaël Roduit ◽  
Rémy Burcelin ◽  
Marie-Line Peyot ◽  
...  

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-α (PPARα)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARα null (PPARαKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARα expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARα expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARαKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARα null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARα, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARα, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.


2018 ◽  
Vol 46 (1) ◽  
pp. 187-202 ◽  
Author(s):  
Jaume Amengual ◽  
Francisco J. García-Carrizo ◽  
Andrea Arreguín ◽  
Hana Mušinović ◽  
Nuria Granados ◽  
...  

Background/Aims: All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. Methods: Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. Results: Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor β/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. Conclusion: These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Jessica M Toli ◽  
Minzhen He ◽  
Carolyn Suzuki ◽  
Maha Abdellatif

Mitochondrial quality control is critical for the survival of cardiac myocytes during stress. The purpose of this study was to examine the effect of metabolic substrates and regulators of metabolism on mitochondrial bioenergetics, as an indicator of mitochondrial quality, and how these factors might influence the recovery of the cell’s bioenergetics after hypoxia/ischemia. By monitoring oxygen consumption rates (OCR), in real-time, in live neonatal rat myocytes and human cardiac myocyte-differentiated induced pluripotent stem cells, we found that both cell types can maintain basal OCR efficiently with any metabolic substrate; however, the neonatal cells require both glucose and fatty acid, while the human adult cells require fatty acid only, for mounting maximum reserve respiratory capacity (RRC). Our data also show that subjecting cardiac myocytes to hypoxia results in a reduction of the cells’ basal OCR and oxidative phosphorylation, and exhausts the RRC, which is accompanied by an increase in pyruvate dehydrogenase kinase (Pdk) 1 and 4. Except for normalization of Pdk1 levels, there was little or no recovery of these parameters after reoxygenation. We, thus, hypothesized, that inhibition of Pdks may help recovery of the cell’s bioenergetics. Indeed, our results show that by inhibiting Pdks with dichloroacetate (DCA) before or after hypoxia, the cells’ bioenergetics, including OCR, oxidative phosphorylation, and RRC in neonatal myocytes, and RRC in the human myocytes fully recover within 24 h. On the other hand, activating AMP-activated kinase (AMPK) resulted in delayed (96 h) improvement of the cells’ RRC that was accompanied by an increase in peroxisome proliferator-activated receptor gamma, coactivator 1α (3.5x), peroxisome proliferator-activated receptor-α (2x), and mitochondrial number (2x). These results led us to conclude that compromised mitochondrial quality can be rescued through mechanisms that regulate glucose or fatty acid oxidation by either inhibiting Pdks or activating AMPK, respectively, in rodent and human myocytes.


2009 ◽  
Vol 296 (3) ◽  
pp. E497-E502 ◽  
Author(s):  
A. Lombardi ◽  
P. de Lange ◽  
E. Silvestri ◽  
R. A. Busiello ◽  
A. Lanni ◽  
...  

Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-l-thyronine (T2) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T2 to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 h after its injection into hypothyroid rats. Administration of T2 induced an increase in mitochondrial oxidation when palmitoyl-CoA (+104%), palmitoylcarnitine (+80%), or succinate (+30%) was used as substrate, but it had no effect when pyruvate was used. T2 was able to 1) activate the AMPK-ACC-malonyl-CoA metabolic signaling pathway known to direct lipid partitioning toward oxidation and 2) increase the importing of fatty acids into the mitochondrion. These results suggest that T2 stimulates mitochondrial fatty acid oxidation by activating several metabolic pathways, such as the fatty acid import/β-oxidation cycle/FADH2-linked respiratory pathways, where fatty acids are imported. T2 also enhanced skeletal muscle mitochondrial thermogenesis by activating pathways involved in the dissipation of the proton-motive force not associated with ATP synthesis (“proton leak”), the effect being dependent on the presence of free fatty acids inside mitochondria. We conclude that skeletal muscle is a target for T2, and we propose that, by activating processes able to enhance mitochondrial fatty acid oxidation and thermogenesis, T2 could play a role in protecting skeletal muscle against excessive intramyocellular lipid storage, possibly allowing it to avoid functional disorders.


2004 ◽  
Vol 24 (20) ◽  
pp. 9079-9091 ◽  
Author(s):  
Janice M. Huss ◽  
Inés Pineda Torra ◽  
Bart Staels ◽  
Vincent Giguère ◽  
Daniel P. Kelly

ABSTRACT Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRα have not been well defined. To identify ERRα-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRα. ERRα upregulated a subset of PGC-1α target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRα−/− mice. Consistent with the gene expression results, ERRα increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRα are known targets for the nuclear receptor PPARα, and therefore, the interaction between these regulatory pathways was explored. ERRα activated PPARα gene expression via direct binding of ERRα to the PPARα gene promoter. Furthermore, in fibroblasts null for PPARα and ERRα, the ability of ERRα to activate several PPARα targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1α was also shown to activate ERRα gene expression. We conclude that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document