scholarly journals Testosterone Induces Redistribution of Forkhead Box-3a and Down-Regulation of Growth and Differentiation Factor 9 Messenger Ribonucleic Acid Expression at Early Stage of Mouse Folliculogenesis

Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 774-782 ◽  
Author(s):  
Jun-Ling Yang ◽  
Chun-Ping Zhang ◽  
Lei Li ◽  
Lin Huang ◽  
Shao-Yang Ji ◽  
...  

Increasing evidence has shown that excess androgen may be a main cause of polycystic ovary syndrome (PCOS). However, the molecular mechanism of androgen action on the ovary is unclear. To investigate the possible impacts of androgen on early follicular development, neonatal mouse ovaries mainly containing primordial follicles were cultured with testosterone. We demonstrated that the number of primary follicles was increased after 10 d culture with testosterone treatment via phosphatidylinositol 3-kinase/Akt pathway. Androgen induced Forkhead box (Foxo)-3a activation, and translocation of Foxo3a protein from oocyte nuclei to cytoplasm, which might be a key step for primordial follicle activation. Interestingly, testosterone was also capable of down-regulating growth and differentiation factor-9 expression via its receptor. In summary, we infer that intraovarian excess androgen in PCOS might result in excess early follicles by inducing oocyte Foxo3a translocation and follicular arrest by down-regulating growth and differentiation factor-9 expression.

Reproduction ◽  
2018 ◽  
Vol 156 (1) ◽  
pp. F59-F73 ◽  
Author(s):  
Anamaria C Herta ◽  
Francesca Lolicato ◽  
Johan E J Smitz

The currently available assisted reproduction techniques for fertility preservation (i.e.in vitromaturation (IVM) andin vitrofertilization) are insufficient as stand-alone procedures as only few reproductive cells can be conserved with these techniques. Oocytes in primordial follicles are well suited to survive the cryopreservation procedure and of use as valuable starting material for fertilization, on the condition that these could be grown up to fully matured oocytes. Our understanding of the biological mechanisms directing primordial follicle activation has increased over the last years and this knowledge has paved the way toward clinical applications. New multistepin vitrosystems are making use of purified precursor cells and extracellular matrix components and by applying bio-printing technologies, an adequate follicular niche can be built. IVM of human oocytes is clinically applied in patients with polycystic ovary/polycystic ovary syndrome; related knowhow could become useful for fertility preservation and for patients with maturation failure and follicle-stimulating hormone resistance. The expectations from the research on human ovarian tissue and immature oocytes cultures, in combination with the improved vitrification methods, are high as these technologies can offer realistic potential for fertility preservation.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Mohammad Jafari Atrabi ◽  
Parimah Alborzi ◽  
Vahid Akbarinejad ◽  
Rouhollah Fathi

Summary In vitro activation of primordial follicles could serve as a safe method to preserve fertility in patients with cancer subjected to ovarian tissue cryopreservation during oncotherapy, however the culture medium for this purpose requires to be optimized. Granulosa cell conditioned medium (GCCM) has been recognized to enhance primordial follicle activation and the present study was conducted to understand whether addition of pyruvate, a combination of insulin, transferrin and selenium (ITS) or testosterone to GCCM could improve its efficiency in this regard. To this end, 1-day-old mouse ovaries were cultured in four different media including CON (control; containing GGCM only), PYR (containing GCCM plus pyruvate), ITS (containing GCCM plus ITS) or TES (containing GCCM plus testosterone) for 11 days. Furthermore, follicular dynamics and gene expression of factors involved in follicular development were assessed using histological examination and RT-PCR, respectively, on days 5 and 11 of culture. Pyruvate decreased follicular activation, but it enhanced the progression of follicles to the primary stage. Moreover, it upregulated Bmp15 and Cx37 (P < 0.05). In the ITS group, activation of follicles was not affected and total number of follicles was reduced by day 11 of culture. Additionally, ITS downregulated Pi3k, Gdf9, Bmp15 and Cx37 (P < 0.05). Although testosterone did not affect primordial follicle activation, it enhanced the development of follicles up to the preantral stage (P < 0.05). Furthermore, testosterone inhibited the expression of Pten but stimulated the expression of Gdf9 and Cx37 (P < 0.05). In conclusion, the present study revealed that inclusion of pyruvate and testosterone into GCCM could enhance the early development of follicles in cultured 1-day-old mouse ovaries.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Catiele Garcia Gervásio ◽  
Marcelo Picinin Bernuci ◽  
Marcos Felipe Silva-de-Sá ◽  
Ana Carolina Japur de Sá Rosa-e-Silva

Background. Although chronic hyperandrogenism, a typical feature of polycystic ovary syndrome, is often associated with disturbed reproductive performance, androgens have been shown to promote ovarian follicle growth in shorter exposures. Here, we review the main effects of androgens on the regulation of early folliculogenesis and the potential of their application in improving follicular in vitro growth. Review. Androgens may affect folliculogenesis directly via androgen receptors (ARs) or indirectly through aromatization to estrogen. ARs are highly expressed in the granulosa and theca cells of early stage follicles and slightly expressed in mature follicles. Short-term androgen exposure augments FSH receptor expression in the granulosa cells of developing follicles and enhances the FSH-induced cAMP formation necessary for the transcription of genes involved in the control of follicular cell proliferation and differentiation. AR activation also increases insulin-like growth factor (IGF-1) and its receptor gene expression in the granulosa and theca cells of growing follicles and in the oocytes of primordial follicles, thus facilitating IGF-1 actions in both follicular recruitment and subsequent development. Conclusion. During the early and intermediate stages of follicular maturation, locally produced androgens facilitate the transition of follicles from the dormant to the growing pool as well as their further development.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. R15-R29 ◽  
Author(s):  
Emmalee A Ford ◽  
Emma L Beckett ◽  
Shaun D Roman ◽  
Eileen A McLaughlin ◽  
Jessie M Sutherland

In women, the non-growing population of follicles that comprise the ovarian reserve is determined at birth and serves as the reservoir for future fertility. This reserve of dormant, primordial follicles and the mechanisms controlling their selective activation which constitute the committing step into folliculogenesis are essential for determining fertility outcomes in women. Much of the available data on the mechanisms responsible for primordial follicle activation focuses on a selection of key molecular pathways, studied primarily in animal models, with findings often not synonymous in humans. The excessive induction of primordial follicle activation may cause the development of premature ovarian insufficiency (POI), a condition characterised by menopause before age 40 years. POI affects 1–2% of all women and is accompanied by additional health risks. Therefore, it is critical to further our understanding of primordial follicle activation in order to diagnose, treat and prevent premature infertility. Research in primordial follicle activation has focused on connecting new molecules to already established key signalling pathways, such as phosphatidylinositol 3-Kinase (PI3K) and mammalian target of rapamycin (mTOR). Additionally, other aspects of the ovarian environment, such as the function of the extracellular matrix, in contributing to primordial follicle activation have gained traction. Clinical applications are examining replication of this extracellular environment through the construction of biological matrices mimicking the 3D ovary, to support follicular growth through to ovulation. This review outlines the importance of the events leading to the establishment of the ovarian reserve and highlights the fundamental factors known to influence primordial follicle activation in humans presenting new horizons for female infertility treatment.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P &lt; 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


2020 ◽  
Author(s):  
V. Praveen Chakravarthi ◽  
Subhra Ghosh ◽  
Katherine F. Roby ◽  
Michael W. Wolfe ◽  
M. A. Karim Rumi

AbstractOver the entire reproductive lifespan in mammals, a fixed number of primordial follicles serve as the source of mature oocytes. Uncontrolled and excessive activation of primordial follicles can lead to depletion of the ovarian reserve. We observed that disruption of ESR2-signaling results in increased activation of primordial follicles in Esr2-null (Esr2-/-) rats. However, follicle assembly was unaffected, and the total number of follicles remained comparable between neonatal wildtype and Esr2-/- ovaries. While the activated follicle counts were increased in Esr2-/- ovary, the number of primordial follicles were markedly decreased. Excessive recruitment of primordial follicles led to premature ovarian senescence in Esr2-/- rats and was associated with reduced levels of serum AMH and estradiol. Disruption of ESR2-signaling through administration of a selective antagonist (PHTPP) increased the number of activated follicles in wildtype rats, whereas a selective agonist (DPN) decreased follicle activation. In contrast, primordial follicle activation was not increased in the absence of ESR1 indicating that the regulation of primordial follicle activation is ESR2-specific. Follicle activation was also increased in Esr2-mutants lacking the DNA-binding domain, suggesting a role for the canonical transcriptional activation function. Both primordial and activated follicles express ESR2 suggesting a direct regulatory role for ESR2 within these follicles. We also detected that loss of ESR2 augmented the activation of AKT, ERK and mTOR pathways. Our results indicate that the lack of ESR2 upregulated both granulosa and oocyte factors, which can facilitate AKT and mTOR activation in Esr2-/- ovaries leading to increased activation of primordial follicles.


Reproduction ◽  
2007 ◽  
Vol 133 (5) ◽  
pp. 855-863 ◽  
Author(s):  
George B John ◽  
Lane J Shirley ◽  
Teresa D Gallardo ◽  
Diego H Castrillon

Primordial follicles are long-lived structures assembled early in life. The mechanisms that control the balance between the conservation and the activation of primordial follicles are critically important for fertility and dictate the onset of menopause. The forkhead transcription factor Foxo3 serves an essential role in these processes by suppressing the growth of primordial follicles, thereby preserving them until later in life. While other factors regulating primordial follicle growth have been described, most serve multiple functions at several stages of female germ cell or follicle development, and corresponding mouse mutants exhibit pleiotropic phenotypes with disruption of multiple stages of follicle assembly, development, or survival. To investigate the possibility that Foxo3 also functions in other aspects of ovarian development beyond its known role in primordial follicle activation (PFA), we performed detailed analyses of mouse ovaries including electron microscopy to study primordial follicle structure, assembly, and early growth. These analyses revealed that the timing of primordial follicle assembly, early oocyte survival, and the expression of early germ line markers were unaffected in early Foxo3 ovaries. Taken together, these studies demonstrate that the phenotype associated with Foxo3 deficiency is remarkably specific for PFA and further support the placement of Foxo3 in a unique phenotypic class among mammalian female sterile mutants. Lastly, we discuss the implications of the specificity of this mutant phenotype with regard to the hypothesis that oocyte regeneration may occur in adults and serves as a means to replenish oocytes lost via natural physiological processes.


2020 ◽  
Vol 21 (9) ◽  
pp. 3120
Author(s):  
Sook Young Yoon ◽  
Ran Kim ◽  
Hyunmee Jang ◽  
Dong Hyuk Shin ◽  
Jin Il Lee ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARγ) is known as a regulator of cellular functions, including adipogenesis and immune cell activation. The objectives of this study were to investigate the expression of PPARγ and identify the mechanism of primordial follicle activation via PPARγ modulators in mouse ovaries. We first measured the gene expression of PPARγ and determined its relationship with phosphatase and tensin homolog (PTEN), protein kinase B (AKT1), and forkhead box O3a (FOXO3a) expression in neonatal mouse ovaries. We then incubated neonatal mouse ovaries with PPARγ modulators, including rosiglitazone (a synthetic agonist of PPARγ), GW9662 (a synthetic antagonist of PPARγ), and cyclic phosphatidic acid (cPA, a physiological inhibitor of PPARγ), followed by transplantation into adult ovariectomized mice. After the maturation of the transplanted ovaries, primordial follicle growth activation, follicle growth, and embryonic development were evaluated. Finally, the delivery of live pups after embryo transfer into recipient mice was assessed. While PPARγ was expressed in ovaries from mice of all ages, its levels were significantly increased in ovaries from 20-day-old mice. In GW9662-treated ovaries in vitro, PTEN levels were decreased, AKT was activated, and FOXO3a was excluded from the nuclei of primordial follicles. After 1 month, cPA-pretreated, transplanted ovaries produced the highest numbers of oocytes and polar bodies, exhibited the most advanced embryonic development, and had the greatest blastocyst formation rate compared to the rosiglitazone- and GW9662-pretreated groups. Additionally, the successful delivery of live pups after embryo transfer into the recipient mice transplanted with cPA-pretreated ovaries was confirmed. Our study demonstrates that PPARγ participates in primordial follicle activation and development, possibly mediated in part by the PI3K/AKT signaling pathway. Although more studies are required, adapting these findings for the activation of human primordial follicles may lead to treatments for infertility that originates from poor ovarian reserves.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Regislane P. Ribeiro ◽  
Antonia M.L.R. Portela ◽  
Anderson W.B. Silva ◽  
José J.N. Costa ◽  
José R.S. Passos ◽  
...  

SummaryThis study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml – Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


1994 ◽  
Vol 13 (1) ◽  
pp. 1-9 ◽  
Author(s):  
R Braw-Tal ◽  
D J Tisdall ◽  
N L Hudson ◽  
P Smith ◽  
K P McNatty

ABSTRACT The aim of this study was to investigate the sites of follistatin and α and βA inhibin mRNA expression in the ovaries of female sheep fetuses at 90, 100, 120 and 135 days of gestation (term=day 147). At 90 and 100 days primordial follicles were formed, followed by the appearance of primary follicles at 100 days of gestation. At days 120 and 135, primordial, primary and preantral (i.e. secondary) follicles were present in the ovaries, but antral (i.e. tertiary) follicles were not observed at any of these gestational ages. Two Booroola genotypes were studied: homozygous carriers (BB) and non-carriers (++) of the fecundity gene (FecB). Irrespective of genotype no specific hybridization of the α and βA inhibin riboprobes was detected in any ovarian cells at days 90, 100, 120 or 135 of gestation. In control mature ovaries, on the other hand, strong hybridization in the granulosa cells of antral follicles was observed. In contrast to α and βA inhibin, follistatin antisense (but not sense) riboprobes hybridized specifically to the granulosa cells of preantral follicles with two or more layers of cells at days 120 and 135 of gestation. Moreover, hybridization was also evident in the cells of the ovarian rete at days 120 and 135, but not at 90 or 100 days. No follistatin mRNA expression was observed in the granulosa cells of primordial or primary follicles or in any other ovarian cell type at any of the gestational ages examined. No FecB-specific differences in follistatin expression were noted with respect to stage of preantral follicular development and there were no obvious differences in the intensity of expression. These results show that follistatin mRNA is expressed specifically in the granulosa cells and intraovarian rete. Expression of follistatin in rete cells was coincident with the increasing numbers of growing follicles within the fetal ovary, indicating that rete cell function may have a role in the ontogeny of early follicular growth. Our results suggest that follistatin and α and βA inhibin may not be important for the initiation of follicle growth in the sheep ovary, since these genes are not expressed during the transformation of a primordial follicle to a primary structure. However, the evidence for follistatin mRNA expression in the ovine fetal ovary implies that this hormone is likely to play a role during the early stages of follicle growth.


Sign in / Sign up

Export Citation Format

Share Document