scholarly journals Gonadotropin-Releasing Hormone-II Increases Membrane Type I Metalloproteinase Production via β-Catenin Signaling in Ovarian Cancer Cells

Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 764-772 ◽  
Author(s):  
Song Ling Poon ◽  
Man-Tat Lau ◽  
Geoffrey L. Hammond ◽  
Peter C. K. Leung

GnRH-II is produced by ovarian cancer cells and enhances their invasiveness in vitro. In our studies of OVCAR-3 and CaOV-3 ovarian cancer cell lines, GnRH-II treatment induced phosphorylation of Akt and glycogen synthase kinase (GSK)3β, as well as β-catenin accumulation in the nucleus, and the latter was reduced by small interfering RNA (siRNA)-mediated depletion of the GnRH receptor. The phosphatidylinositol 3 kinase (PI3K)/Akt pathway is involved in β-catenin-dependent signaling, and pretreatment of these human ovarian cancer cells with a PI3K/Akt inhibitor, LY294002, attenuated GnRH-II-stimulated phosphorylation of GSK3β and inhibited GnRH-II-induced invasion. It also attenuated GnRH-II induced trans-activation of a β-catenin-dependent reporter gene, most likely because GSK3β phosphorylation promotes translocation of β-catenin to the nucleus. Membrane type I matrix metalloproteinase (MT1-MMP) contributes to tumor progression directly, or by processing the latent MMP-2 zymogen, and is a known target of β-catenin signaling. When OVCAR-3 and CaOV-3 cells were treated with GnRH-II, MT1-MMP levels increased approximately 3-fold, whereas siRNA-mediated depletion of GnRH receptor or pretreatment with LY294002 abrogated this. In addition, lithium chloride, which increases GSK3β phosphorylation and the nuclear translocation of β-catenin, increased MT1-MMP levels in these ovarian cancer cells. By contrast, depletion of β-catenin by siRNA treatment abolished GnRH-II-induced MT1-MMP synthesis and reduced their invasive potential. Furthermore, siRNA-mediated reduction of MT1-MMP levels reduced GnRH-II-induced invasion in ovarian cancer cells. We therefore conclude that GnRH-II stimulates the PI3K/Akt pathway, and the phosphorylation of GSK3β, thereby enhancing the β-catenin-dependent up-regulation of MT1-MMP production, which contributes to ovarian cancer metastasis.

2014 ◽  
Vol 395 (10) ◽  
pp. 1221-1231 ◽  
Author(s):  
Lana Bruney ◽  
Kaitlynn C. Conley ◽  
Natalie M. Moss ◽  
Yueying Liu ◽  
M. Sharon Stack

Abstract Mucin16 [MUC16/cancer antigen 125 (CA-125)], a high-molecular-weight glycoprotein expressed on the ovarian tumor cell surface, potentiates metastasis via selective binding to mesothelin on peritoneal mesothelial cells. Shed MUC16/CA-125 is detectable in sera from ovarian cancer patients. We investigated the potential role of membrane type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane collagenase highly expressed in ovarian cancer cells, in MUC16/CA-125 ectodomain shedding. An inverse correlation between MT1-MMP and MUC16 immunoreactivity was observed in human ovarian tumors and cells. Further, when MUC16-expressing OVCA433 cells were engineered to overexpress MT1-MMP, surface expression of MUC16/CA-125 was lost, whereas cells expressing the inactive E240A mutant retained surface MUC16/CA-125. As a functional consequence, decreased adhesion of cells expressing catalytically active MT1-MMP to three-dimensional meso-mimetic cultures and intact ex vivo peritoneal tissue explants was observed. Nevertheless, meso-mimetic invasion is enhanced in MT1-MMP-expressing cells. Together, these data support a model wherein acquisition of catalytically active MT1-MMP expression in ovarian cancer cells induces MUC16/CA-125 ectodomain shedding, reducing adhesion to meso-mimetic cultures and to intact peritoneal explants. However, proteolytic clearing of MUC16/CA-125, catalyzed by MT1-MMP, may then expose integrins for high-affinity cell binding to peritoneal tissues, thereby anchoring metastatic lesions for subsequent proliferation within the collagen-rich sub-mesothelial matrix.


2019 ◽  
Vol 18 ◽  
pp. 153303381987477
Author(s):  
Li Q. Zhang ◽  
Hua Q. Yang ◽  
Su Q. Yang ◽  
Ying Wang ◽  
Xian J. Chen ◽  
...  

Introduction: The mechanism of tumorigenesis and metastasis of ovarian cancer has not yet been elucidated. This study aimed to investigate the role and molecular mechanism of cytosolic nonspecific dipeptidase 2 in tumorigenesis and metastasis. Methods: Cytosolic nonspecific dipeptidase 2 expression in human ovarian cancer tissues and cell lines was assessed with methyl thiazolyl tetrazolium (MTT), clone formation, and transwell assays performed to evaluate the ability of ovarian cancer cells to proliferate and migrate. Nude mice tumor formation experiments were also performed by subcutaneously injecting cells with stable cytosolic nonspecific dipeptidase 2 knockdown and control SKOV3 cells into BALB/c female nude mice to detect changes in PI3K/AKT pathway-related proteins by Western blotting. Results: Cytosolic nonspecific dipeptidase 2 was highly expressed in human ovarian cancer tissues, with its expression associated with pathological data, including ovarian cancer metastasis. A cytosolic nonspecific dipeptidase 2 stable knockdown or ectopic expression ovarian cancer cell model was established and demonstrated that cytosolic nonspecific dipeptidase 2 could promote the proliferation of ovarian cancer cells. Transwell cell migration and invasion assays confirmed that cytosolic nonspecific dipeptidase 2 enhanced cell metastasis in ovarian cancer. Furthermore, in vivo xenograft experiments demonstrated that cytosolic nonspecific dipeptidase 2 can promote the development and progression of ovarian cancer, increasing the expression of phosphorylated PI3K and AKT. Conclusions: Cytosolic nonspecific dipeptidase 2 promotes the occurrence and development of ovarian cancer through the PI3K/AKT signaling pathway.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1866
Author(s):  
Katia A. Mesquita ◽  
Reem Ali ◽  
Rachel Doherty ◽  
Michael S. Toss ◽  
Islam Miligy ◽  
...  

FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β. FEN1 depletion, gene inactivation, or inhibition re-sensitizes platinum-resistant ovarian cancer cells to cisplatin. BRCA2 deficient cells exhibited synthetic lethality upon treatment with a FEN1 inhibitor. FEN1 inhibitor-resistant PEO1R cells were generated, and these reactivated BRCA2 and overexpressed the key repair proteins, POLβ and XRCC1. FEN1i treatment was selectively toxic to POLβ deficient but not XRCC1 deficient ovarian cancer cells. High throughput screening of 391,275 compounds identified several FEN1 inhibitor hits that are suitable for further drug development. We conclude that FEN1 is a valid target for ovarian cancer therapy.


Author(s):  
Li-ying Zhang ◽  
Jia-ying Yu ◽  
Yan-long Leng ◽  
Ran-ran Zhu ◽  
Hong-xian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document