scholarly journals Human pseudoislet system enables detection of differences in G-protein-coupled-receptor signaling pathways between α and β cells

2019 ◽  
Author(s):  
John T. Walker ◽  
Rachana Haliyur ◽  
Heather A. Nelson ◽  
Matthew Ishahak ◽  
Gregory Poffenberger ◽  
...  

SUMMARYG-protein-coupled-receptors (GPCRs) modulate insulin secretion from β cells and glucagon secretion from α cells. Here, we developed an integrated approach to study the function of primary human islet cells using genetically modified pseudoislets that resemble native islets across multiple parameters. We studied the Gi and Gq GPCR pathways by expressing the designer receptors exclusively activated by designer drugs (DREADDs) hM4Di or hM3Dq. Activation of Gi signaling reduced insulin and glucagon secretion, while activation of Gq signaling stimulated glucagon secretion but had both stimulatory and inhibitory effects on insulin secretion. Further, we developed a microperifusion system that allowed synchronous acquisition of GCaMP6f biosensor signal and hormone secretory profiles and showed that the dual effects for Gq signaling occur through changes in intracellular Ca2+. By combining pseudoislets with a microfluidic system, we co-registered intracellular signaling dynamics and hormone secretion and demonstrated differences in GPCR signaling pathways between human β and α cells.

2006 ◽  
Vol 84 (3-4) ◽  
pp. 287-297 ◽  
Author(s):  
Fernand Gobeil ◽  
Audrey Fortier ◽  
Tang Zhu ◽  
Michela Bossolasco ◽  
Martin Leduc ◽  
...  

G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE2 and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.


2009 ◽  
Vol 83 (16) ◽  
pp. 8141-8152 ◽  
Author(s):  
Joseph D. Sherrill ◽  
Melissa P. Stropes ◽  
Olivia D. Schneider ◽  
Diana E. Koch ◽  
Fabiola M. Bittencourt ◽  
...  

ABSTRACT The presence of numerous G protein-coupled receptor (GPCR) homologs within the herpesvirus genomes suggests an essential role for these genes in viral replication in the infected host. Such is the case for murine cytomegalovirus (MCMV), where deletion of the M33 GPCR or replacement of M33 with a signaling defective mutant has been shown to severely attenuate replication in vivo. In the present study we utilized a genetically altered version of M33 (termed R131A) in combination with pharmacological inhibitors to further characterize the mechanisms by which M33 activates downstream signaling pathways. This R131A mutant of M33 fails to support salivary gland replication in vivo and, as such, is an important tool that can be used to examine the signaling activities of M33. We show that M33 stimulates the transcription factor CREB via heterotrimeric Gq/11 proteins and not through promiscuous coupling of M33 to the Gs pathway. Using inhibitors of signaling molecules downstream of Gq/11, we demonstrate that M33 stimulates CREB transcriptional activity in a phospholipase C-β and protein kinase C (PKC)-dependent manner. Finally, utilizing wild-type and R131A versions of M33, we show that M33-mediated activation of other signaling nodes, including the mitogen-activated protein kinase family member p38α and transcription factor NF-κB, occurs in the absence of Gq/11 and PKC signaling. The results from the present study indicate that M33 utilizes multiple mechanisms to modulate intracellular signaling cascades and suggest that signaling through PLC-β and PKC plays a central role in MCMV pathogenesis in vivo.


2006 ◽  
Vol 290 (2) ◽  
pp. E308-E316 ◽  
Author(s):  
Rui Takahashi ◽  
Hisamitsu Ishihara ◽  
Akira Tamura ◽  
Suguru Yamaguchi ◽  
Takahiro Yamada ◽  
...  

Abnormal glucagon secretion is often associated with diabetes mellitus. However, the mechanisms by which nutrients modulate glucagon secretion remain poorly understood. Paracrine modulation by β- or δ-cells is among the postulated mechanisms. Herein we present further evidence of the paracrine mechanism. First, to activate cellular metabolism and thus hormone secretion in response to specific secretagogues, we engineered insulinoma INS-1E cells using an adenovirus-mediated expression system. Expression of the Na+-dependent dicarboxylate transporter (NaDC)-1 resulted in 2.5- to 4.6-fold ( P < 0.01) increases in insulin secretion in response to various tricarboxylic acid cycle intermediates. Similarly, expression of glycerol kinase (GlyK) increased insulin secretion 3.8- or 4.2-fold ( P < 0.01) in response to glycerol or dihydroxyacetone, respectively. This cell engineering method was then modified, using the Cre- loxP switching system, to activate β-cells and non-β-cells separately in rat islets. NaDC-1 expression only in non-β-cells, among which α-cells are predominant, caused an increase (by 1.8-fold, P < 0.05) in glucagon secretion in response to malate or succinate. However, the increase in glucagon release was prevented when NaDC-1 was expressed in whole islets, i.e., both β-cells and non-β-cells. Similarly, an increase in glucagon release with glycerol was observed when GlyK was expressed only in non-β-cells but not when it was expressed in whole islets. Furthermore, dicarboxylates suppressed basal glucagon secretion by 30% ( P < 0.05) when NaDC-1 was expressed only in β-cells. These data demonstrate that glucagon secretion from rat α-cells depends on β-cell activation and provide insights into the coordinated mechanisms underlying hormone secretion from pancreatic islets.


Physiology ◽  
2008 ◽  
Vol 23 (6) ◽  
pp. 313-321 ◽  
Author(s):  
Ying Pei ◽  
Sarah C. Rogan ◽  
Feng Yan ◽  
Bryan L. Roth

Different families of G-protein-coupled receptors (GPCRs) have been engineered to provide exclusive control over the activation of these receptors and thus to understand better the consequences of their signaling in vitro and in vivo. These engineered receptors, named RASSLs (receptors activated solely by synthetic ligands) and DREADDs (designer receptors exclusively activated by designer drugs), are insensitive to their endogenous ligands but can be activated by synthetic drug-like compounds. Currently, the existing RASSLs and DREADDs cover the Gi, Gq, and Gs signaling pathways. These modified GPCRs can be utilized as ideal tools to study GPCR functions selectively in specific cellular populations.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1008
Author(s):  
Guillaume Bastin ◽  
Lemieux Luu ◽  
Battsetseg Batchuluun ◽  
Alexandra Mighiu ◽  
Stephanie Beadman ◽  
...  

A number of diverse G-protein signaling pathways have been shown to regulate insulin secretion from pancreatic β-cells. Accordingly, regulator of G-protein signaling (RGS) proteins have also been implicated in coordinating this process. One such protein, RGS4, is reported to show both positive and negative effects on insulin secretion from β-cells depending on the physiologic context under which it was studied. We here use an RGS4-deficient mouse model to characterize previously unknown G-protein signaling pathways that are regulated by RGS4 during glucose-stimulated insulin secretion from the pancreatic islets. Our data show that loss of RGS4 results in a marked deficiency in glucose-stimulated insulin secretion during both phase I and phase II of insulin release in intact mice and isolated islets. These deficiencies are associated with lower cAMP/PKA activity and a loss of normal calcium surge (phase I) and oscillatory (phase II) kinetics behavior in the RGS4-deficient β-cells, suggesting RGS4 may be important for regulation of both Gαi and Gαq signaling control during glucose-stimulated insulin secretion. Together, these studies add to the known list of G-protein coupled signaling events that are controlled by RGS4 during glucose-stimulated insulin secretion and highlight the importance of maintaining normal levels of RGS4 function in healthy pancreatic tissues.


2021 ◽  
Author(s):  
Chien-Ting Wu ◽  
Keren I. Hilgendorf ◽  
Romina J. Bevacqua ◽  
Yan Hang ◽  
Janos Demeter ◽  
...  

Multiple G protein-coupled receptors (GPCRs) are expressed in pancreatic islet cells, but the majority have unknown functions. We observed specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α and β cells. Loss of cilia disrupts β-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α and β cells, including FFAR4, PTGER4, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and β-cell lines and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets relocalized ciliary FFAR4 and PTGER4 and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α and β cells is controlled by ciliary GPCRs providing new targets for diabetes.


2018 ◽  
Vol 293 (47) ◽  
pp. 18086-18098 ◽  
Author(s):  
Rajesh Gupta ◽  
Dan C. Nguyen ◽  
Michael D. Schaid ◽  
Xia Lei ◽  
Appakalai N. Balamurugan ◽  
...  

Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic β-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4– and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein–coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in β-cells and in mouse and human islets, but its function in β-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic β-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from β-cells, possibly contributing to the progression of type 2 diabetes in obesity.


Sign in / Sign up

Export Citation Format

Share Document