scholarly journals Major role of 3',5'-cyclic adenosine monophosphate-dependent protein kinase A pathway in corticotropin-releasing factor gene expression in the rat hypothalamus in vivo.

Endocrinology ◽  
1996 ◽  
Vol 137 (6) ◽  
pp. 2389-2396 ◽  
Author(s):  
K Itoi ◽  
N Horiba ◽  
F Tozawa ◽  
Y Sakai ◽  
K Sakai ◽  
...  
2019 ◽  
Vol 476 (18) ◽  
pp. 2561-2577
Author(s):  
Quynh-Anh Thi Nguyen ◽  
Juyong Choi ◽  
Jin Kuk Yang ◽  
Sang Yoon Lee

Abstract Misfolded proteins in the endoplasmic reticulum (ER) are removed through multistep processes termed ER-associated degradation (ERAD). Valosin-containing protein (VCP) plays a crucial role in ERAD as the interaction of ubiquitin fusion degradation protein 1 (Ufd1) with VCP via its SHP box motif (228F-S-G-S-G-N-R-L235) is required for ERAD. However, the mechanisms by which the VCP–Ufd1 interaction is regulated are not well understood. Here, we found that the serine 229 residue located in the Ufd1 SHP box is phosphorylated in vitro and in vivo by cyclic adenosine monophosphate-dependent protein kinase A (PKA), with this process being enhanced by either forskolin (an adenylyl cyclase activator) or calyculin A (a protein phosphatase inhibitor). Moreover, a phosphomimetic mutant (S229D) of Ufd1 as well as treatment by forskolin, calyculin A, or activated PKA strongly reduced Ufd1 binding affinity for VCP. Consistent with this, the Ufd1 S229D mutant significantly inhibited ERAD leading to the accumulation of ERAD substrates such as a tyrosinase mutant (C89R) and 3-hydroxy-3-methylglutaryl coenzyme A reductase. However, a non-phosphorylatable Ufd1 mutant (S229A) retained VCP-binding ability and was less effective in blocking ERAD. Collectively, our results support that Ufd1 S229 phosphorylation status mediated by PKA serves as a key regulatory point for the VCP–Ufd1 interaction and functional ERAD.


Sign in / Sign up

Export Citation Format

Share Document