scholarly journals Insulin-Like Growth Factor I (IGF-I) Receptor Overexpression Abolishes the IGF Requirement for Differentiation and Induces a Ligand-Dependent Transformed Phenotype in C2 Inducible Myoblasts*

Endocrinology ◽  
1997 ◽  
Vol 138 (12) ◽  
pp. 5210-5219 ◽  
Author(s):  
Magali Navarro ◽  
Bruno Barenton ◽  
Veronique Garandel ◽  
Juergen Schnekenburger ◽  
Henri Bernardi

Abstract Insulin-like growth factors (IGFs) stimulate both proliferation and differentiation of myogenic cell lines, and these actions are mostly mediated through the type I IGF receptor (type I IGF-R). To further investigate the role of this receptor in phenotypic characteristics of C2 murine myoblasts, we overexpressed the human type I IGF-R in the inducible clone of C2 cells, which requires IGFs in the differentiation medium to undergo terminal differentiation. Inducible myoblasts were transfected with either the eukaryotic expression vector pNTK or pNTK containing the human type I IGF-R complementary DNA, and we isolated two clones named Ind-Neo and Ind-R, respectively. Binding and autophosphorylation experiments indicate that Ind-R cells express about 10 times as much type I IGF-R compared with Ind-Neo control cells and that the transfected type I IGF-R is functional in Ind-R cells. We show that overexpression of the human type I IGF-R makes inducible myoblasts able to differentiate spontaneously, as assessed by expression of the myogenic transcription factors MyoD and myogenin, detection of the muscle-specific protein troponin T, and myotube formation. Moreover, when exposed to IGF-I, Ind-R cells lose contact inhibition, grow in the presence of a low level of growth factors and form colonies in soft agar, which is characteristic of a ligand-dependent transformed phenotype. It emerges from this study that 1) the type I IGF-R is strongly involved in the phenotypic differences between inducible and permissive cells with respect to the differentiation program; and 2) overexpression causes this receptor to act as a ligand-dependent transforming protein in muscle cells. We suggest that type I IGF-R abundance and level of activation may determine the efficiency of the autocrine mode of action of IGFs and discriminate their biological functions.

1991 ◽  
Vol 128 (1) ◽  
pp. 35-NP ◽  
Author(s):  
M. J. Duclos ◽  
R. S. Wilkie ◽  
C. Goddard

ABSTRACT Insulin-like growth factors-I and -II (IGF-I and IGF-II) stimulate proliferation, differentiation, nutrient uptake and protein accretion in muscle cells. These effects are thought to be mediated through the type-I IGF receptor although a role for the type-II IGF receptor cannot be ruled out, since it has been found in most cells studied so far. Current evidence suggests that the chicken does not have a type-II IGF receptor and therefore provides a good model to study the function of IGF peptides. We have compared the effects of insulin and insulin-like growth factors on DNA synthesis with the binding of these peptides to receptors in primary chicken muscle satellite cells. Human IGF-I (hIGF-I), hIGF-II and porcine insulin increased thymidine incorporation into DNA by threefold in muscle satellite cells prepared from neonatal chickens. IGF-I and -II were almost equipotent, with half-maximum effective concentrations of 10 μg/l, and were 1000-fold more potent than insulin. A combination of maximum effective concentrations of all three peptides was not additive, suggesting that their effect was mediated by the same receptor. Receptor binding studies on satellite cells demonstrated the presence of specific IGF receptors. Human IGF-I inhibited the binding of 125I-labelled hIGF-I with a much higher potency than insulin, as usually observed for a type-I IGF receptor. However, unlabelled hIGF-II exhibited a higher potency than hIGF-I in displacing 125I-labelled hIGF-I. Affinity cross-linking of 125I-labelled hIGF-I and -II, followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, showed that hIGF-I and -II bound to a receptor with the structural characteristics of a type-I IGF receptor and confirmed the lack of a type-II IGF receptor in these cells. The concentrations of IGF-I, -II and insulin required for biological action and to displace 125I-labelled hIGF-I binding were similar, and support the hypothesis that their effects on proliferation were mediated exclusively through a type-I IGF receptor. Journal of Endocrinology (1991) 128, 35–42


1999 ◽  
Vol 276 (4) ◽  
pp. R1164-R1171 ◽  
Author(s):  
K. M. Kelley ◽  
T. R. Johnson ◽  
J. Ilan ◽  
R. W. Moskowitz

Nonresponsiveness to the growth-stimulatory actions of insulin-like growth factor (IGF)-I in chondrocytes has been reported in a number of disease states associated with impaired glucose metabolism. Primary rabbit chondrocytes were investigated for changes in their IGF response system [type-I IGF receptor and IGF-binding protein (IGFBP) expression] and in their ability to mount a synthetic response to IGF-I [as35S-labeled proteoglycan ([35S]PG) production] in media containing varying ambient glucose concentrations. Whereas basal [35S]PG synthetic rate was unaffected by glucose concentration, synthetic responsiveness to IGF-I was lost in media containing <5 mmol/l glucose or in media containing a “diabetic” glucose concentration (25 mmol/l). IGFBP expression, as measured by Northern analysis of mRNA levels and Western ligand blotting of secreted protein levels, was not significantly altered in the different glucose media, nor were there any differences in the cell surface localization of IGFBPs as assessed by affinity cross-linking with 125I-labeled IGF-I, suggesting that IGFBPs do not induce the IGF-I resistance. The nonresponsiveness to IGF-I in reduced glucose occurred with 25–50% reductions in steady-state levels of IGF type-I receptor mRNA and protein. A significant correlation between IGF receptor mRNA level and synthetic response to IGF-I was observed between 0 and 10 mmol/l glucose concentrations, suggesting that the loss of responsiveness in reduced glucose is manifested at the level of transcription and/or receptor mRNA stability. In contrast, nonresponsiveness to IGF-I in chondrocytes in diabetic glucose concentrations occurred without changes in receptor mRNA and protein levels, suggesting that IGF-I resistance was due to post-ligand-binding receptor defects. It is proposed that IGF-I resistance in chondrocytes subjected to inappropriate glucose levels may constitute an important pathogenic mechanism in degenerative cartilage disorders.


1989 ◽  
Vol 123 (2) ◽  
pp. 319-326 ◽  
Author(s):  
S. J. Winder ◽  
A. Turvey ◽  
I. A. Forsyth

ABSTRACT Ovine mammary epithelial cell clumps (30–90 μm) were plated onto attached gels of rat tail collagen in serum-free medium. Synthesis of DNA by these cultures could be stimulated by insulin-like growth factor-I (IGF-I) with a median effective dose of 5 μg/l, irrespective of stage of pregnancy. The time-course of response, however, was significantly slower in cells prepared from mammary tissue of non-pregnant and early pregnant sheep compared with sheep later in pregnancy. IGF-II had approximately 10% of the potency of IGF-I in stimulating DNA synthesis. Insulin acted over a wide concentration range and produced a maximum rate of stimulation not significantly different from that produced by IGF-I. These results are consistent with actions through the type-I IGF receptor although insulin may also act through its own receptor, possibly stimulating local IGF-I production. It is concluded that IGF-I is an important mitogen for ovine mammary epithelial cells. Journal of Endocrinology (1989) 123, 319–326


1989 ◽  
Vol 122 (2) ◽  
pp. 565-571 ◽  
Author(s):  
J. A. Roe ◽  
J. M. M. Harper ◽  
P. J. Buttery

ABSTRACT Methods were developed for the isolation and culture of satellite cells from adult sheep muscle. Differentiated cultures of these cells were used to investigate the effects of four hormones and growth factors on protein synthesis and degradation. Insulin was found to have no effect except at supraphysiological concentrations (100 nmol/l and 1 μmol/l) where it is probably cross-reacting with the insulin-like growth factor (IGF) type-I receptor. IGF-I was found to be anabolic at lower concentrations (1–3 nmol/l). Epidermal growth factor (EGF) had a smaller effect on protein synthesis and degradation than insulin or IGF-I. The specific activity of the muscle-specific enzyme creatine phosphokinase (CPK) was increased by treatment with EGF. When both IGF-I and EGF were present in the test media an additive effect on protein synthesis was observed. However, no additive effect of IGF-I and insulin was noted. No effects of bovine GH were seen. Journal of Endocrinology (1989) 122, 565–571


1993 ◽  
Vol 136 (2) ◽  
pp. 191-198 ◽  
Author(s):  
T. A. Anderson ◽  
L. R. Bennett ◽  
M. A. Conlon ◽  
P. C. Owens

ABSTRACT The presence of insulin-like growth factor-I (IGF-I)-related molecules and IGF-binding factors in blood from golden perch, Macquaria ambigua, an Australian native freshwater fish, was investigated. Serum was acidified to dissociate IGF and IGF-binding protein complexes that might be present, and fractionated by size-exclusion high-performance liquid chromatography at pH 2·8. Fractions were neutralized and their activities assessed by (i) an immunoassay for mammalian IGF-I which also detects chicken IGF-I but in which all known forms of IGF-II react very poorly, (ii) a receptor assay for IGF-II in which all known forms of IGF-I react poorly, and (iii) a type-I IGF receptor assay in which mammalian IGF-I and IGF-II polypeptides are almost equivalent. No IGF-II-like activity was detected. Three peaks of IGF-I-like activity were detected by IGF-I immunoassay and type-I IGF receptor assay. The major peak of activity was similar in molecular size to human IGF-binding protein-3, 45–55 kDa ('large IGF'), and a minor peak of activity which was similar in size to mammalian IGFs, 7·5 kDa. A third peak of activity was observed eluting at a time which indicates that it is a smaller molecule than any previously described IGF. The large IGF was temperature-sensitive, but was not a binding protein for 125I-labelled human IGF-I (hIGF-I). This material therefore was able to bind to anti-hIGF-I antibodies and to human type-I IGF receptors, and may represent the fish equivalent of mammalian prepro-IGFs. The two smallest forms of IGF activity identified by IGF-I radioimmunoassay and type-I radioreceptor assay following acidic size-exclusion chromatography were able to stimulate protein synthesis by L-6 myoblasts in culture, although large IGF did not. When fresh (but not frozen and thawed) golden perch serum was incubated with 125I-labelled hIGF-I and then fractionated by size-exclusion liquid chromatography at pH 7·4 through Sephadex G-100, the radioactivity became associated with a complex, intermediate in size between free IGF-I and the major IGF-binding protein in human serum. The association of 125I-labelled hIGF-I with the complex was inhibited by the presence of unlabelled hIGF-I in the incubation. These studies show that receptor-active, immunoreactive and bioactive IGF-I-like activity is present in golden perch serum, and demonstrate the presence of an IGF-I-binding factor in this species. Journal of Endocrinology (1993) 136, 191–198


1988 ◽  
Vol 118 (4) ◽  
pp. 513-520 ◽  
Author(s):  
C. A. Conover ◽  
P. Misra ◽  
R. L. Hintz ◽  
R. G. Rosenfeld

Abstract. Specific, high affinity binding of 125I-IGF-I to the type I IGF receptor on human fibroblast monolayers was not altered by varying feeding schedules, serum lots, washing procedures, or incubation times and temperatures. However, markedly different competitive binding curves were obtained when different iodinated IGF-I preparations were used. Five of six radioligands bound preferentially to the type I IGF receptor on human fibroblast monolayers, with 50% displacement at 4–8 μg/l unlabelled IGF-I; with one radioligand a paradoxical 20–200% increase in 125I-IGF-I binding was observed at low concentrations of unlabelled IGF-I, while concentrations as high as 100 μg/l IGF-I failed to displace this radioligand. The latter binding pattern cannot be accounted for by 125I-IGF-I binding to the type II IGF receptor. These data indicate that various radioligands may have preferential affinities for different IGF-I binding sites on human fibroblast monolayers.


2013 ◽  
Vol 2013 ◽  
pp. 1-37 ◽  
Author(s):  
Rosalyne L. Westley ◽  
Felicity E. B. May

Obesity has reached epidemic proportions in the developed world. The progression from obesity to diabetes mellitus type 2, via metabolic syndrome, is recognised, and the significant associated increase in the risk of major human cancers acknowledged. We review the molecular basis of the involvement of morbidly high concentrations of endogenous or therapeutic insulin and of insulin-like growth factors in the progression from obesity to diabetes and finally to cancer. Epidemiological and biochemical studies establish the role of insulin and hyperinsulinaemia in cancer risk and progression. Insulin-like growth factors, IGF-1 and IGF-2, secreted by visceral or mammary adipose tissue have significant paracrine and endocrine effects. These effects can be exacerbated by increased steroid hormone production. Structural studies elucidate how each of the three ligands, insulin, IGF-1, and IGF-2, interacts differently with isoforms A and B of the insulin receptor and with type I IGF receptor and explain how these protagonists contribute to diabetes-associated cancer. The above should inform appropriate treatment of cancers that arise in obese individuals and in those with diabetes mellitus type 2. Novel drugs that target the insulin and insulin-like growth factor signal transduction pathways are in clinical trial and should be effective if appropriate biomarker-informed patient stratification is implemented.


Sign in / Sign up

Export Citation Format

Share Document