scholarly journals Effects of CTGF/Hcs24, a Product of a Hypertrophic Chondrocyte-Specific Gene, on the Proliferation and Differentiation of Chondrocytes in Culture1

Endocrinology ◽  
2000 ◽  
Vol 141 (1) ◽  
pp. 264-273 ◽  
Author(s):  
Tohru Nakanishi ◽  
Takashi Nishida ◽  
Tsuyoshi Shimo ◽  
Kappei Kobayashi ◽  
Toshikazu Kubo ◽  
...  
2003 ◽  
Vol 196 (2) ◽  
pp. 265-275 ◽  
Author(s):  
Takashi Nishida ◽  
Satoshi Kubota ◽  
Tomohiro Fukunaga ◽  
Seiji Kondo ◽  
Gen Yosimichi ◽  
...  

Author(s):  
Samina Hyder Haq

DNA methylation is one of the epigenetic mechanisms which have been implicated in cellular differentiation, ageing and disease development. The effect of hypomethylating drug 5-aza-2’ deoxycytidine (5-aza dC) on the biosynthetic profile of caudal region chondrocytes from chick sternum was studied in detail. The chondrocytes in culture were treated with varying doses of 5-aza dC for 48h and maintained subsequently without the treatment and harvested at selected time points for analysis of growth and differentiation status. 15µg/ml of 5-aza dC showed optimum Concentration at which there was a significant increase in DNA synthesis and RNA synthesis as per cell basis. There was also a significant increase in total protein synthesis and collagen synthesis as per cell basis at this concentration. This optimal concentration also showed to up regulate the gene expression of Type X collagen and alkaline phosphatase, which are the marker of hypertrophic chondrocyte expression. These results further support the notion that methylation is the major epigenetic factor controlling the differentiation and maturation of chondrocytes


2018 ◽  
Vol 782 ◽  
pp. 116-123
Author(s):  
Yuzuha Ichikawa ◽  
Kei Yasuda ◽  
Masahiro Takahara ◽  
Mamoru Aizawa ◽  
Nobuyuki Kanzawa

We previously reported that P19.CL6 cells can be cultured in porous hydroxyapatite ceramics prepared by firing green compacts consisting of apatite fibers and spherical carbon beads (150 μm in diameter). Cells cultured for 20 days in an apatite-fiber scaffold (AFS) proliferated and differentiated into cells expressing troponin T, a cardiomyocyte-specific gene, but the expression level was insufficient to support the functional maturation of cells required for biomedical device applications. In this study, we aimed to optimize the internal AFS environment for cardiomyocytes by mixing two sizes (150-and 20-μm) of carbon beads. P19.CL6 cells were cultured in AFS materials comprising different carbon ratios in the presence of alpha-MEM with (AFS+) or without (AFS-) dimethyl sulfoxide (DMSO), and cell growth and gene expression were assessed. We found that AFS(50, 1:1 ratio) is the most suitable scaffold for the proliferation and differentiation of P19.CL6 cells and the addition of DMSO to the culture medium is necessary for differentiation into cardiomyocytes. We also assessed the culture of P19.CL6 cells in AFS in a radial-flow bioreactor for several days.


1996 ◽  
Vol 16 (2) ◽  
pp. 619-625 ◽  
Author(s):  
E Suh ◽  
P G Traber

Precise regulation of cellular proliferation, differentiation, and senescence results in the continuous renewal of the intestinal epithelium with maintenance of a highly ordered tissue architecture. Here we show that an intestine-specific homeobox gene, Cdx2, is a transcription factor that regulates both proliferation and differentiation in intestinal epithelial cells. Conditional expression of Cdx2 in IEC-6 cells, an undifferentiated intestinal cell line, led to arrest of proliferation for several days followed by a period of growth resulting in multicellular structures containing a well-formed columnar layer of cells. The columnar cells had multiple morphological characteristics of intestinal epithelial cells. Enterocyte-like cells were polarized with tight junctions, lateral membrane interdigitations, and well-organized microvilli with associated glycocalyx located at the apical pole. Remarkably, there were also cells with a goblet cell-like ultrastructure, suggesting that two of the four intestinal epithelial cell lineages may arise from IEC-6 cells. Molecular evidence for differentiation was shown by demonstrating that cells expressing high levels of Cdx2 expressed sucrase-isomaltase, an enterocyte-specific gene which is a well-defined target for the Cdx2 protein. Taken together, our data suggest that Cdx2 may play a role in directing early processes in intestinal cell morphogenesis and in the maintenance of the differentiated phenotype by supporting transcription of differentiated gene products. We propose that Cdx2 is part of a regulatory network that orchestrates a developmental program of proliferation, morphogenesis, and gene expression in the intestinal epithelium.


Author(s):  
Samina Hyder Haq

DNA methylation is one of the epigenetic mechanisms which have been implicated in cellular differentiation, ageing and disease development. The effect of hypomethylating drug 5-aza-2´deoxycytidine (5-aza dC) on the biosynthetic profile of caudal region chondrocytes from chick sternum was studied in detail. The chondrocytes in culture were treated with varying doses of 5-aza dC for 48h and maintained subsequently without the treatment and harvested at selected time points for analysis of growth and differentiation status. 15µg/ml of 5-aza dC showed optimum Concentration at which there was a significant increase in DNA synthesis and RNA synthesis as per cell basis. There was also a significant increase in total protein synthesis and collagen synthesis as per cell basis at this concentration. This optimal concentration also showed to up regulate the gene expression of Type X collagen and alkaline phosphatase, which are the marker of hypertrophic chondrocyte expression. These results further support the notion that methylation is the major epigenetic factor controlling the differentiation and maturation of chondrocytes.


2021 ◽  
Author(s):  
Flavia Bossi ◽  
Benjamin Jin ◽  
Elena Lazarus ◽  
Heather Cartwright ◽  
Yanniv Dorone ◽  
...  

Body size varies widely among species, populations, and individuals depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared to wild type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a certain number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and physically and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.


Sign in / Sign up

Export Citation Format

Share Document