scholarly journals The Acute and Chronic Stimulatory Effects of Endothelin-1 on Glucose Transport Are Mediated by Distinct Pathways in 3T3-L1 Adipocytes**This work was supported by NIH Grant DK-33651.

Endocrinology ◽  
2000 ◽  
Vol 141 (12) ◽  
pp. 4623-4628 ◽  
Author(s):  
Ken-ichi Ishibashi ◽  
Takeshi Imamura ◽  
Prem M. Sharma ◽  
Satoshi Ugi ◽  
Jerrold M. Olefsky

Abstract We have recently shown that pretreatment with endothelin-1 (ET-1) for 20 min stimulates GLUT4 translocation in a PI3-kinase-dependent manner in 3T3-L1 adipocytes (Imamura, T. et al., J Biol Chem 274:33691–33695). This study presents another pathway by which ET-1 potentiates glucose transport in 3T3-L1 adipocytes. ET-1 treatment (10 nm) leads to approximately 2.5-fold stimulation of 2-deoxyglucose (2-DOG) uptake within 20 min, reaching a maximal effect of ∼4-fold at ∼6 h, and recovering almost to basal levels after 24 h. Insulin treatment (3 ng/ml) results in an approximately 5-fold increase in 2-DOG uptake at 1 h, and recovering to basal levels after 24 h. The ETA receptor antagonist, BQ 610, inhibited ET-1 induced glucose uptake both at 20 min and 6 h, whereas the ETB receptor antagonist, BQ 788, was without effect. Interestingly, ET-1 stimulated 2-DOG uptake at 6 h, not at 20 min, was almost completely blocked by the protein-synthesis inhibitor, cycloheximide and the RNA-synthesis inhibitor, actinomycin D, suggesting that the short-term (20 min) and long-term (6 h) effects of ET-1 involve distinct mechanisms. GLUT4 translocation assay showed that 20 min, but not 6 h, exposure to ET-1 led to GLUT4 translocation to the plasma membrane. In contrast, 6 h, but not 20 min, exposure to ET-1 increased expression of the GLUT1 protein, without affecting expression of GLUT4 protein. ET-1 induced 2-DOG uptake and GLUT1 expression at 6 h were completely inhibited by the MEK inhibitor, PD 98059, and partially inhibited by the PI3-kinase inhibitor, LY 294002, and the Gαi inhibitor, pertussis toxin. The PLC inhibitor, U 73122, was without effect. These findings suggest that ET-1 induced GLUT1 protein expression is primarily mediated via MAPK, and partially via PI3K in 3T3-L1 adipocytes.

2018 ◽  
Vol 25 (4) ◽  
pp. 160
Author(s):  
Kusumarn Noipha ◽  
Putrada Ninla-Aesong

  The potential roles of Zingiber officinale Roscoe (ginger) for treating and preventing diabetes have been investigated in both humans and experimental animals. However, the mode of its action has not yet been elucidated. This study aimed to investigate the effects of ginger extract on glucose uptake activity and its activation pathway in L6 myotubes. Cells were co-cultured for 24 h with a variable concentration of either ginger extract or 2 mM metformin or 200 nM insulin or 20 μM Troglitazone (TGZ), followed by a 10-min 2-[3H]-deoxy-D-glucose (2-DG) uptake. The levels of glucose transporters 1 (GLUT1) and GLUT4 protein and mRNA expression were determined. Ginger extract at 400 μg/ml significantly enhanced glucose uptake in L6 myotubes (208.03 ± 10.65% above basal value, p<0.05) after co-culture for 24 h. The ginger-enhancement of glucose uptake was inhibited by 3.5 μM cycloheximide, a protein synthesis inhibitor, 1 μM wortmannin (Phosphatidylinositol 3-Kinase (PI3 kinase) inhibitor) and 15 nM rapamycin (mammalian target of rapamycin (mTOR) inhibitor). The enhancement of glucose transport by ginger extract at 400 μg/ml was accompanied with the increased expression of GLUT1 protein (1.60 ± 0.20, 2.03 ± 0.19, and 2.25 ± 0.35 folds of basal at 4, 8, and 24 h, respectively p<0.05) and mRNA (1.22 ± 0.96, 1.45 ± 0.93, 1.91 ± 0.75, 2.32±0.92, and 2.20 ± 0.64 folds of basal at 1, 2, 4, 8, and 24 h, respectively p<0.05) in a time-dependent manner. Z. officinale Roscoe rhizome extract increase glucose transport activity of L6 myotubes by enhancing GLUT1 expression, the results of PI3-Kinase and 5’-AMP-activated kinase (AMPK) stimulation.


1994 ◽  
Vol 72 (06) ◽  
pp. 973-978 ◽  
Author(s):  
Hiromasa Shimizu ◽  
Hiroshi Takayama ◽  
Jong-Dae Lee ◽  
Kazuo Satake ◽  
Takanobu Taniguchi ◽  
...  

SummaryThe ability of vanadate, an inhibitor of protein-tyrosine phosphatases, to affect the production of prostacyclin (PGI2) and endothelin-1 (ET-1) and protein-tyrosine phosphorylation in human umbilical vein endothelial cells (HUVEC) was studied. The addition of vanadate to monolayers of cultured HUVEC caused a sustained release of PGI2 from HUVEC in a time- and dose-dependent manner. When aspirin-treated HUVEC, which have lost the ability to increase PGI2 production in response to arachidonate, were incubated with vanadate, the cells recovered their ability to increase PGI2 production in response to arachidonate. This recovery of inducible PGI2 production in aspirin-treated HUVEC was completely inhibited either by cycloheximide, a protein synthesis inhibitor, or by actinomycin D, an RNA synthesis inhibitor. In contrast, the same concentration of vanadate suppressed the basal release of ET-1 from HUVEC. Vanadate also caused an increase in protein-tyrosine phosphorylation in HUVEC. These data indicate that vanadate induces opposite effects on PGI2 and ET-1 production with a concomitant increase in protein-tyrosine phosphorylation in HUVEC.


2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


2020 ◽  
Vol 21 (15) ◽  
pp. 5537
Author(s):  
Johannes Kornhuber ◽  
Iulia Zoicas

It is well known that long-term consolidation of newly acquired information, including information related to social fear, require de novo protein synthesis. However, the temporal dynamics of protein synthesis during the consolidation of social fear memories is unclear. To address this question, mice received a single systemic injection with the protein synthesis inhibitor, anisomycin, at different time-points before or after social fear conditioning (SFC), and memory was assessed 24 h later. We showed that anisomycin impaired the consolidation of social fear memories in a time-point-dependent manner. Mice that received anisomycin 20 min before, immediately after, 6 h, or 8 h after SFC showed reduced expression of social fear, indicating impaired social fear memory, whereas anisomycin caused no effects when administered 4 h after SFC. These results suggest that consolidation of social fear memories requires two stages of protein synthesis: (1) an initial stage starting during or immediately after SFC, and (2) a second stage starting around 6 h after SFC and lasting for at least 5 h.


1990 ◽  
Vol 110 (4) ◽  
pp. 1427-1438 ◽  
Author(s):  
S Aznavoorian ◽  
M L Stracke ◽  
H Krutzsch ◽  
E Schiffmann ◽  
L A Liotta

Transduction of signals initiating motility by extracellular matrix (ECM) molecules differed depending on the type of matrix molecule and whether the ligand was in solution or bound to a substratum. Laminin, fibronectin, and type IV collagen stimulated both chemotaxis and haptotaxis of the A2058 human melanoma cell line. Peak chemotactic responses were reached at 50-200 nM for laminin, 50-100 nM for fibronectin, and 200-370 nM for type IV collagen. Checkerboard analysis of each attractant in solution demonstrated a predominantly directional (chemotactic) response, with a minor chemokinetic component. The cells also migrated in a concentration-dependent manner to insoluble step gradients of substratum-bound attractant (haptotaxis). The haptotactic responses reached maximal levels at coating concentrations of 20 nM for laminin and type IV collagen, and from 30 to 45 nM for fibronectin. Pretreatment of cells with the protein synthesis inhibitor, cycloheximide (5 micrograms/ml), resulted in a 5-30% inhibition of both chemotactic and haptotactic responses to each matrix protein, indicating that de novo protein synthesis was not required for a significant motility response. Pretreatment of cells with 50-500 micrograms/ml of synthetic peptides containing the fibronectin cell-recognition sequence GRGDS resulted in a concentration-dependent inhibition of fibronectin-mediated chemotaxis and haptotaxis (70-80% inhibition compared to control motility); negative control peptide GRGES had only a minimal effect. Neither GRGDS nor GRGES significantly inhibited motility to laminin or type IV collagen. Therefore, these results support a role for the RGD-directed integrin receptor in both types of motility response to fibronectin. After pretreatment with pertussis toxin (PT), chemotactic responses to laminin, fibronectin, and type IV collagen were distinctly different. Chemotaxis to laminin was intermediate in sensitivity; chemotaxis to fibronectin was completely insensitive; and chemotaxis to type IV collagen was profoundly inhibited by PT. In marked contrast to the inhibition of chemotaxis, the hepatotactic responses to all three ligands were unaffected by any of the tested concentrations of PT. High concentrations of cholera toxin (CT; 10 micrograms/ml) or the cAMP analogue, 8-Br-cAMP (0.5 mM), did not significantly affect chemotactic or haptotactic motility to any of the attractant proteins, ruling out the involvement of cAMP in the biochemical pathway initiating motility in these cells. The sensitivity of chemotaxis induced by laminin and type IV collagen, but not fibronectin, to PT indicates the involvement of a PT-sensitive G protein in transduction of the signals initiating motility to soluble laminin and type IV collagen.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 19 (10) ◽  
pp. 6765-6774 ◽  
Author(s):  
Takeshi Imamura ◽  
Peter Vollenweider ◽  
Katsuya Egawa ◽  
Martin Clodi ◽  
Kenichi Ishibashi ◽  
...  

ABSTRACT We evaluated the role of the G alpha-q (Gαq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Gαq function by single cell microinjection of anti-Gαq/11 antibody or RGS2 protein (a GAP protein for Gαq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Gαq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Gαq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Gαq (WT-Gαq) or a constitutively active Gαq mutant (Q209L-Gαq) by using an adenovirus expression vector. In the basal state, Q209L-Gαq expression stimulated 2-deoxy-d-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Gαq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Gαq stimulates PI3-kinase activity in p110α and p110γ immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110α by 10-fold. Nevertheless, only microinjection of anti-p110α (and not p110γ) antibody inhibited both insulin- and Q209L-Gαq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Gαq are dependent on the p110α subunit of PI3-kinase. In summary, (i) Gαq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Gαq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Gαq can transmit signals from the insulin receptor to the p110α subunit of PI3-kinase, which leads to GLUT4 translocation.


Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1738-1743 ◽  
Author(s):  
M Muzio ◽  
F Re ◽  
M Sironi ◽  
N Polentarutti ◽  
A Minty ◽  
...  

Abstract The aim of this study was to examine the expression of interleukin-1 receptor antagonist (IL-1ra) in human myelomonocytic cells treated with IL-13. IL-13 induced IL-1ra transcripts in human circulating monocytes and polymorphonuclear cells (PMN). Induction by IL-13 was not blocked, but rather superinduced, in the presence of the protein synthesis inhibitor cycloheximide. Actinomycin D blocked induction, suggesting involvement of gene transcription. The half-life of IL-1ra transcripts was prolonged by IL-13 from 1.3 hours to 4.5 hours in monocytes and to 12 hours in PMN. By reverse transcriptase-polymerase chain reaction, IL- 13 was found to augment the transcripts coding for the soluble form of IL-1ra, but also to induce the expression of the intracellular (keratinocyte) form of IL-1ra, the latter being extremely low or undetectable in myelomonocytic cells. IL-13 induced production of IL- 1ra in myelomonocytic cells, augmenting both cell-associated and released protein. Induction of IL-1ra by IL-13 may represent a further mechanism by which this molecule can counteract the potent proinflammatory properties of IL-1.


1994 ◽  
Vol 179 (4) ◽  
pp. 1225-1232 ◽  
Author(s):  
M Pouliot ◽  
P P McDonald ◽  
P Borgeat ◽  
S R McColl

The synthesis of leukotrienes in human blood neutrophils chiefly relies on the activity of two enzymes, phospholipase A2 and 5-lipoxygenase (5-LO). In turn, the activation of the 5-LO requires the participation of a recently characterized membrane-bound protein, the 5-LO-activating protein (FLAP). In this study, we have investigated conditions under which FLAP expression in neutrophils may be modulated. Of several cytokines tested, only granulocyte/macrophage colony-stimulating factor (GM-CSF) (and to a lesser extent tumor necrosis factor alpha) significantly increased expression of FLAP. GM-CSF increased FLAP mRNA steady-state levels in a time- and dose-dependent manner. The stimulatory effect of GM-CSF on FLAP mRNA was inhibited by prior treatment of the cells with the transcription inhibitor, actinomycin D, and pretreatment of the cells with the protein synthesis inhibitor, cycloheximide, failed to prevent the increase in FLAP mRNA induced by GM-CSF. The accumulation of newly synthesized FLAP, as determined by immunoprecipitation after incorporation of 35S-labeled amino acids, was also increased after incubation of neutrophils with GM-CSF. In addition, the total level of FLAP protein was increased in GM-CSF-treated neutrophils, as determined by two-dimensional gel electrophoresis, followed by Western blot. GM-CSF did not alter the stability of the FLAP protein, indicating that the effect of GM-CSF on FLAP accumulation was the consequence of increased de novo synthesis as opposed to decreased degradation of FLAP. Finally, incubation of neutrophils with the synthetic glucocorticoid dexamethasone directly stimulated the upregulation of FLAP mRNA and protein, and enhanced the effect of GM-CSF. Taken together, these data demonstrate that FLAP expression may be upmodulated after appropriate stimulation of neutrophils. The increase in FLAP expression induced by GM-CSF in inflammatory conditions could confer upon neutrophils a prolonged capacity to synthesize leukotrienes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245169
Author(s):  
Brent A. Stanfield ◽  
Todd Purves ◽  
Scott Palmer ◽  
Bruce Sullenger ◽  
Karen Welty-Wolf ◽  
...  

Introduction Anti-inflammatory cytokine IL-10 suppresses pro-inflammatory IL-12b expression after Lipopolysaccharide (LPS) stimulation in colonic macrophages, as part of the innate immunity Toll-Like Receptor (TLR)-NF-κB activation system. This homeostatic mechanism limits excess inflammation in the intestinal mucosa, as it constantly interacts with the gut flora. This effect is reversed with Histone Deacetylase 3 (HDAC3), a class I HDAC, siRNA, suggesting it is mediated through HDAC3. Given alveolar macrophages’ prominent role in Acute Lung Injury (ALI), we aim to determine whether a similar regulatory mechanism exists in the typically sterile pulmonary microenvironment. Methods Levels of mRNA and protein for IL-10, and IL-12b were determined by qPCR and ELISA/Western Blot respectively in naïve and LPS-stimulated alveolar macrophages. Expression of the NF-κB intermediaries was also similarly assessed. Experiments were repeated with AS101 (an IL-10 protein synthesis inhibitor), MS-275 (a selective class 1 HDAC inhibitor), or both. Results LPS stimulation upregulated all proinflammatory mediators assayed in this study. In the presence of LPS, inhibition of IL-10 and/or class 1 HDACs resulted in both synergistic and independent effects on these signaling molecules. Quantitative reverse-transcriptase PCR on key components of the TLR4 signaling cascade demonstrated significant diversity in IL-10 and related gene expression in the presence of LPS. Inhibition of IL-10 secretion and/or class 1 HDACs in the presence of LPS independently affected the transcription of MyD88, IRAK1, Rela and the NF-κB p50 subunit. Interestingly, by quantitative ELISA inhibition of IL-10 secretion and/or class 1 HDACs in the presence of LPS independently affected the secretion of not only IL-10, IL-12b, and TNFα, but also proinflammatory mediators CXCL2, IL-6, and MIF. These results suggest that IL-10 and class 1 HDAC activity regulate both independent and synergistic mechanisms of proinflammatory cytokine/chemokine signaling. Conclusions Alveolar macrophages after inflammatory stimulation upregulate both IL-10 and IL-12b production, in a highly class 1 HDAC-dependent manner. Class 1 HDACs appear to help maintain the balance between the pro- and anti-inflammatory IL-12b and IL-10 respectively. Class 1 HDACs may be considered as targets for the macrophage-initiated pulmonary inflammation in ALI in a preclinical setting.


1980 ◽  
Vol 84 (1) ◽  
pp. 1-15
Author(s):  
J. W. Jacklet

1. The circadian rhythm of compound action potentials (CAP) frequency recorded from the isolated eye of Aplysia in culture medium and darkness was subjected to step and pulse treatments with anisomycin, a protein synthesis inhibitor. 2. The step application of anisomycin and its continued presence in the culture medium lengthened the period of the rhythm in a dose-dependent manner. At 10(−8) M the period was increased from the normal 26.5 h to about 28 h and at 10(−7) M the period was lengthened to 31 h or longer. At 10(−6) M the rhythm was suppressed but the CAP activity continued without the cyclic variations in CAP frequency. 3. Six-hour pulses of anisomycin at 10(−6) M caused phase-dependent phase-shifts of the rhythm. Maximum phase delays of 15 h were obtained at CT (circadian time) 2 and maximum phase advances of 4 h were obtained at CT 6. The phase response curves at 12, 15 and 17 degrees C were essentially identical. 4. Anisomycin appears to act rather selectively on the circadian clock mechanism. It does not alter the CAP amplitude and duration and it does not alter the bursting pacemaker mechanism of the optic nerve CAP or central neurones. 5. The results support the hypothesis that the synthesis of a protein or polypeptide on eucaryotic ribosomes is an essential part of the circadian clock timing mechanism. The sensitivity of the clock to anisomycin is the same at three different temperatures (12, 15 and 17 degrees C) within the physiological range of temperatures for Aplysia, as expected for a clock whose period length is temperature compensated (Q10 1.02) over that same range. 6. At the critical phases of CT 1-4, anisomycin pulses often caused unusual perturbations of the rhythm. These effects are consistent with the hypothesis that the circadian rhythm is a multioscillator system.


Sign in / Sign up

Export Citation Format

Share Document