scholarly journals Antidiabetic Activity of Zingiber officinale Roscoe Rhizome Extract: an In Vitro Study

2018 ◽  
Vol 25 (4) ◽  
pp. 160
Author(s):  
Kusumarn Noipha ◽  
Putrada Ninla-Aesong

  The potential roles of Zingiber officinale Roscoe (ginger) for treating and preventing diabetes have been investigated in both humans and experimental animals. However, the mode of its action has not yet been elucidated. This study aimed to investigate the effects of ginger extract on glucose uptake activity and its activation pathway in L6 myotubes. Cells were co-cultured for 24 h with a variable concentration of either ginger extract or 2 mM metformin or 200 nM insulin or 20 μM Troglitazone (TGZ), followed by a 10-min 2-[3H]-deoxy-D-glucose (2-DG) uptake. The levels of glucose transporters 1 (GLUT1) and GLUT4 protein and mRNA expression were determined. Ginger extract at 400 μg/ml significantly enhanced glucose uptake in L6 myotubes (208.03 ± 10.65% above basal value, p<0.05) after co-culture for 24 h. The ginger-enhancement of glucose uptake was inhibited by 3.5 μM cycloheximide, a protein synthesis inhibitor, 1 μM wortmannin (Phosphatidylinositol 3-Kinase (PI3 kinase) inhibitor) and 15 nM rapamycin (mammalian target of rapamycin (mTOR) inhibitor). The enhancement of glucose transport by ginger extract at 400 μg/ml was accompanied with the increased expression of GLUT1 protein (1.60 ± 0.20, 2.03 ± 0.19, and 2.25 ± 0.35 folds of basal at 4, 8, and 24 h, respectively p<0.05) and mRNA (1.22 ± 0.96, 1.45 ± 0.93, 1.91 ± 0.75, 2.32±0.92, and 2.20 ± 0.64 folds of basal at 1, 2, 4, 8, and 24 h, respectively p<0.05) in a time-dependent manner. Z. officinale Roscoe rhizome extract increase glucose transport activity of L6 myotubes by enhancing GLUT1 expression, the results of PI3-Kinase and 5’-AMP-activated kinase (AMPK) stimulation.

Endocrinology ◽  
2000 ◽  
Vol 141 (12) ◽  
pp. 4623-4628 ◽  
Author(s):  
Ken-ichi Ishibashi ◽  
Takeshi Imamura ◽  
Prem M. Sharma ◽  
Satoshi Ugi ◽  
Jerrold M. Olefsky

Abstract We have recently shown that pretreatment with endothelin-1 (ET-1) for 20 min stimulates GLUT4 translocation in a PI3-kinase-dependent manner in 3T3-L1 adipocytes (Imamura, T. et al., J Biol Chem 274:33691–33695). This study presents another pathway by which ET-1 potentiates glucose transport in 3T3-L1 adipocytes. ET-1 treatment (10 nm) leads to approximately 2.5-fold stimulation of 2-deoxyglucose (2-DOG) uptake within 20 min, reaching a maximal effect of ∼4-fold at ∼6 h, and recovering almost to basal levels after 24 h. Insulin treatment (3 ng/ml) results in an approximately 5-fold increase in 2-DOG uptake at 1 h, and recovering to basal levels after 24 h. The ETA receptor antagonist, BQ 610, inhibited ET-1 induced glucose uptake both at 20 min and 6 h, whereas the ETB receptor antagonist, BQ 788, was without effect. Interestingly, ET-1 stimulated 2-DOG uptake at 6 h, not at 20 min, was almost completely blocked by the protein-synthesis inhibitor, cycloheximide and the RNA-synthesis inhibitor, actinomycin D, suggesting that the short-term (20 min) and long-term (6 h) effects of ET-1 involve distinct mechanisms. GLUT4 translocation assay showed that 20 min, but not 6 h, exposure to ET-1 led to GLUT4 translocation to the plasma membrane. In contrast, 6 h, but not 20 min, exposure to ET-1 increased expression of the GLUT1 protein, without affecting expression of GLUT4 protein. ET-1 induced 2-DOG uptake and GLUT1 expression at 6 h were completely inhibited by the MEK inhibitor, PD 98059, and partially inhibited by the PI3-kinase inhibitor, LY 294002, and the Gαi inhibitor, pertussis toxin. The PLC inhibitor, U 73122, was without effect. These findings suggest that ET-1 induced GLUT1 protein expression is primarily mediated via MAPK, and partially via PI3K in 3T3-L1 adipocytes.


2010 ◽  
Vol 6 (1) ◽  
pp. 36
Author(s):  
Silvana Dinaintang Harikedua

The objective of this study was to investigate the effect of ginger extract addition and refrigerate storage on sensory quality of Tuna through panelist’s perception. Panelists (n=30) evaluated samples for overall appearance and flavor attribute using hedonic scale 1–7. The sample which is more acceptable by panelists on flavor attributes having 3% gingers extract and storage for 3 days. The less acceptable sample on flavor attribute having 0% ginger extract and storage for 9 days. On the other hand, the sample which is more acceptable by panelists on overall appearance having 0% ginger extract without storage treatment. The less acceptable sample on overall appearance having 3% ginger extract and storage for 9 days.


Phytomedicine ◽  
2006 ◽  
Vol 13 (6) ◽  
pp. 434-441 ◽  
Author(s):  
R. Anandharajan ◽  
S. Jaiganesh ◽  
N.P. Shankernarayanan ◽  
R.A. Viswakarma ◽  
A. Balakrishnan

2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Chia-Wen Lo ◽  
Yi-Hsueh Lin ◽  
Ya-Chen Yang ◽  
...  

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


Planta Medica ◽  
2012 ◽  
Vol 78 (14) ◽  
pp. 1549-1555 ◽  
Author(s):  
Yiming Li ◽  
Van Tran ◽  
Colin Duke ◽  
Basil Roufogalis

2013 ◽  
Vol 33 (7) ◽  
pp. 685-700 ◽  
Author(s):  
P Rajesh ◽  
K Balasubramanian

Di(2-ethyl hexyl)-phthalate (DEHP) is an endocrine disrupter and is the most abundantly used phthalate derivative, which is suspected to be an inevitable environmental exposure contributing to the increasing incidence of type-2 diabetes in humans. Therefore, the present study was designed to address the dose-dependent effects of DEHP on insulin signaling molecules in L6 myotubes. L6 myotubes were exposed to different concentrations (25, 50, and 100 μM) of DEHP for 24 h. At the end of exposure, cells were utilized for assessing various parameters. Insulin receptor and glucose transporter4 (GLUT4) gene expression, insulin receptor protein concentration, glucose uptake and oxidation, and enzymatic and nonenzymatic antioxidants were significantly reduced, but glutamine fructose-6-phosphate amidotransferase, nitric oxide, lipid peroxidation, and reactive oxygen species levels were elevated in a dose-dependent manner in L6 myotubes exposed to DEHP. The present study in turn shows the direct adverse effect of DEHP on the expression of insulin receptor and GLUT4 gene, glucose uptake, and oxidation in L6 myotubes suggesting that DEHP exposure may have a negative influence on insulin signaling.


Author(s):  
Shavilla Lukita ◽  
Winda Khosasi ◽  
Chandra Susanto ◽  
Florenly

Red ginger extract has a category strong antibacterial effect on Staphylococcusaureus and Streptococcus mutans. Red ginger essential oil has the potential forstronger inhibition. This study aims to compare the antibacterial effectiveness of redginger essential oil against Staphylococcus aureus and Streptococcus mutans. Thedesign of this study was a laboratory experimental design with a factorial completelyrandomized design. The red ginger used in this study was proven to be a species ofZingiber officinale Roscoe. The production of essential oils in this study uses thesteam distillation method. The content of secondary metabolites in red ginger wastested quantitatively by the GC-MS method. Determination of antibacterial activityusing the disc diffusion method. The data were processed using the SPSS 21.0program. The normality of data distribution was tested with the Shapiro-Wilk test,followed by one-way ANOVA, Levene's test, and the Tukey HSD Post Hoc Test. Theresults of the antibacterial test of red ginger essential oil against Staphylococcusaureus (21.21mm ± 0.315) and Streptoococcus mutans (23.43mm ± 0.189) provedthat the inhibition power of the category was very strong at a concentration of 75%.


2021 ◽  
Vol 913 (1) ◽  
pp. 012108
Author(s):  
P Pakan ◽  
K Lidia ◽  
M Riwu

Abstract Diabetes mellitus is a condition of metabolic imbalance, indicated by a high level of blood glucose (hyperglycemia) resulting from a reduction of insulin secretion, action, or both. People with diabetes suffer from a lack or deficiency of insulin or insulin resistance. The metabolic imbalances are often not satisfactorily corrected using conventional medicines and even cause some side effects, which can be detrimental. Research on herbal medicines for the treatment of diabetes is urged by the need to reduce unwanted side effects common with conventional medicines/treatments used in glucose regulation. This study aims to investigate the antidiabetic effect of Ginger (Zingiber officinale) aqueous extract in improving the glucose uptake in mouse tissues in vitro. This study is a true experimental research design with a posttest-only control group design. There were three groups of mice in this study: the control group, which were only given plain water; the second group of mice with 5% aqueous ginger extract and the last group were given 25% aqueous ginger extract. All groups were given treatment for four consecutive weeks, then dissected their cardiac muscle, skeletal muscle, pancreas, and liver tissues to analyze the glucose uptake. The result showed that both the ginger aqueous extract groups were able to increase the glucose uptake of the mice. In conclusion, this research has shown that aqueous ginger extract may have improved the glucose uptake in most tissues of the mice in the groups. Therefore, ginger could have great potential as an alternative way in the treatment of diabetes type 2.


Sign in / Sign up

Export Citation Format

Share Document