Distal Enhancer Potentiates Activin- and GnRH-Induced Transcription of FSHB

Endocrinology ◽  
2021 ◽  
Author(s):  
Stephanie C Bohaczuk ◽  
Jessica Cassin ◽  
Theresa I Slaiwa ◽  
Varykina G Thackray ◽  
Pamela L Mellon

Abstract Follicle-stimulating hormone (FSH) is critical for fertility. Transcription of FSHB, the gene encoding the beta subunit, is rate-limiting in FSH production and is regulated by both gonadotropin-releasing hormone (GnRH) and activin. Activin signals through SMAD transcription factors. While the mechanisms and importance of activin signaling in mouse Fshb transcription are well-established, activin regulation of human FSHB is less well understood. We previously reported a novel enhancer of FSHB which contains a fertility-associated single nucleotide polymorphism (rs10031006) and requires a region resembling a full (8 base-pair) SMAD binding element (SBE). Here, we investigated the role of the putative SBE within the enhancer in activin and GnRH regulation of FSHB. In mouse gonadotrope-derived LβT2 cells, the upstream enhancer potentiated activin induction of both the human and mouse FSHB proximal promoters and conferred activin responsiveness to a minimal promoter. Activin induction of the enhancer required the SBE and was blocked by the inhibitory SMAD7, confirming involvement of the classical SMAD signaling pathway. GnRH induction of FSHB was also potentiated by the enhancer and dependent on the SBE, consistent with known activin/GnRH synergy regulating FSHB transcription. In DNA pull-down, the enhancer SBE bound SMAD4, and chromatin immunoprecipitation demonstrated SMAD4 enrichment at the enhancer in native chromatin. Combined activin/GnRH treatment elevated levels of the active transcriptional histone marker, histone 3 lysine 27 acetylation at the enhancer. Overall, this study indicates that the enhancer is directly targeted by activin signaling and identifies a novel, evolutionarily conserved mechanism by which activin and GnRH can regulate FSHB transcription.

2021 ◽  
Author(s):  
Kevin B. Koronowski ◽  
Carolina M. Greco ◽  
He Huang ◽  
Jin-Kwang Kim ◽  
Jennifer L. Fribourgh ◽  
...  

SUMMARYKetone bodies are evolutionarily conserved metabolites that function as energy substrates, signaling molecules and epigenetic regulators. β-hydroxybutyrate (β-OHB) is utilized in lysine β-hydroxybutyrylation (Kbhb) of histones, which associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke β-OHB. Mass spectrometry analysis of the β-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification and 1-carbon metabolic pathways. Kbhb of S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, results in inhibition of enzymatic activity. Our results illuminate the role of Kbhb on hepatic metabolism under ketogenic conditions and demonstrate the functional consequence of this modification on a central metabolic enzyme.


2015 ◽  
Vol 105 (12) ◽  
pp. 1594-1600 ◽  
Author(s):  
Michael E. H. Matson ◽  
Ian M. Small ◽  
William E. Fry ◽  
Howard S. Judelson

Prior work has shown that the inheritance of resistance to metalaxyl, an oomycete-specific fungicide, is complex and may involve multiple genes. Recent research indicated that a single nucleotide polymorphism (SNP) in the gene encoding RPA190, the largest subunit of RNA polymerase I, confers resistance to metalaxyl (or mefenoxam) in some isolates of the potato late blight pathogen Phytophthora infestans. Using both DNA sequencing and high resolution melt assays for distinguishing RPA190 alleles, we show here that the SNP is absent from certain resistant isolates of P. infestans from North America, Europe, and Mexico. The SNP is present in some members of the US-23 and US-24 clonal lineages, but these tend to be fairly sensitive to the fungicide based on artificial media and field test data. Diversity in the level of sensitivity, RPA190 genotype, and RPA190 copy number was observed in these lineages but were uncorrelated. Controlled laboratory crosses demonstrated that RPA190 did not cosegregate with metalaxyl resistance from a Mexican and British isolate. We conclude that while metalaxyl may be used to control many contemporary strains of P. infestans, an assay based on RPA190 will not be sufficient to diagnose the sensitivity levels of isolates.


2021 ◽  
Author(s):  
Jadwiga Snarska ◽  
Ewa Fiedorowicz ◽  
Dominika Rozmus ◽  
Konrad Wroński ◽  
Maria Latacz ◽  
...  

Abstract Background The role of serotonin and its metabolic pathway in proper functioning of the pancreas has not been thoroughly investigated yet in acute pancreatitis (AP) patients. Tryptophan hydroxylase (TPH) as the rate-limiting enzyme of serotonin synthesis has been considered for possible associations in various diseases. Single-nucleotide polymorphisms (SNPs) in TPH genes have been already described in associations with psychiatric and digestive system disorders. This study aimed to explore the association of a rs211105 (T/G) polymorphism in TPH1 gene with tryptophan hydroxylase 1 concentrations in blood serum in a population of acute pancreatitis patients, and to investigate this association with acute pancreatitis susceptibility. Results Our data showed an association between the presence of the T allele at the position rs211105 (OR = 2.47, 95% CI: 0.94-6.50, p = 0.06) under conditions of a decreased AP incidence. For TT and GT genotypes in the control group, the lowest concentration of TPH was associated with higher serotonin levels (TT: Rs=-0.415, p=0.0018; GT: Rs=-0,457, p=0.0066), while for the AP group the highest levels of TPH among the TT genotype were associated with lower levels of serotonin (TT: Rs=-0.749, p<0.0001, and in the GG genotype higher levels of TPH were associated with higher levels of serotonin (GG: Rs=-0.738, p=0.037). Conclusions Here, a new insight in the potential role of a selected genetic factor in pancreatitis development was shown. Not only the metabolic pathway of serotonin, but also factors affecting serotonin synthesis may be interesting and important points in acute pancreatitis.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Bernhard N. Bohnert ◽  
Irene Gonzalez-Menendez ◽  
Thomas Dörffel ◽  
Jonas C. Schneider ◽  
Mengyun Xiao ◽  
...  

ABSTRACT Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg−/−) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper.


2021 ◽  
Author(s):  
Jadwiga Snarska ◽  
Ewa Fiedorowicz ◽  
Dominika Rozmus ◽  
Konrad Wroński ◽  
Maria Latacz ◽  
...  

Abstract Background: The role of serotonin and its metabolic pathway in the proper functioning of the pancreas has not been thoroughly investigated yet in the aspect of AP (acute pancreatitis). Tryptophan hydroxylase (TPH) as the rate-limiting enzyme of serotonin synthesis has been considered for possible associations in various diseases. Single-nucleotide polymorphisms (SNPs) in TPH genes have been already described in associations with psychiatric and digestive system disorders. Aim of this study was to explore association of rs211105 (T/G) polymorphism in TPH1 gene with tryptophan hydroxylase 1 concentrations in blood serum in population of acute pancreatitis patients, and to investigate this association with acute pancreatitis susceptibility. Results: To date, we have found an association between the presence of the T allele at the position rs211105 (OR = 2.47, 95% CI: 0.94-6.50, p = 0.06) under conditions of a decreased AP incidence. For TT and GT genotype in control group, the lowest concentration of TPH was associated with higher serotonin levels (TT: Rs=-0.415, p=0.0018; GT: Rs=-0,457, p=0.0066), while for AP group: the highest levels of TPH among TT genotype were associated with lower levels of serotonin (TT: Rs=-0.749, p=0.0000), and in GG genotype higher levels of TPH were associated with higher levels of serotonin (GG: Rs=-0.738, p=0.037).Conclusions: Here, the new insight of the potential role of selected genetic factor in pancreatitis development was brought. Not only the metabolic pathway of serotonin, but also factors affecting serotonin synthesis may be interesting and important point in acute pancreatitis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jadwiga Snarska ◽  
Ewa Fiedorowicz ◽  
Dominika Rozmus ◽  
Konrad Wroński ◽  
Maria Latacz ◽  
...  

Abstract Background The role of serotonin and its metabolic pathway in proper functioning of the pancreas has not been thoroughly investigated yet in acute pancreatitis (AP) patients. Tryptophan hydroxylase (TPH) as the rate-limiting enzyme of serotonin synthesis has been considered for possible associations in various diseases. Single-nucleotide polymorphisms (SNPs) in TPH genes have been already described in associations with psychiatric and digestive system disorders. This study aimed to explore the association of a rs211105 (T/G) polymorphism in TPH1 gene with tryptophan hydroxylase 1 concentrations in blood serum in a population of acute pancreatitis patients, and to investigate this association with acute pancreatitis susceptibility. Results Our data showed an association between the presence of the T allele at the position rs211105 (OR = 2.47, 95 % CI 0.94–6.50, p = 0.06) under conditions of a decreased AP incidence. For TT and GT genotypes in the control group, the lowest concentration of TPH was associated with higher serotonin levels (TT: Rs = − 0.415, p = 0.0018; GT: Rs = − 0.457, p = 0.0066), while for the AP group the highest levels of TPH among the TT genotype were associated with lower levels of serotonin (TT: Rs = − 0.749, p < 0.0001, and in the GG genotype higher levels of TPH were associated with higher levels of serotonin (GG: Rs = − 0.738, p = 0.037). Conclusions Here, a new insight in the potential role of a selected genetic factor in pancreatitis development was shown. Not only the metabolic pathway of serotonin, but also factors affecting serotonin synthesis may be interesting and important points in acute pancreatitis.


2009 ◽  
Vol 106 (37) ◽  
pp. 15622-15627 ◽  
Author(s):  
Stefanie A. Mortimer ◽  
Kevin M. Weeks

A striking and widespread observation is that higher-order folding for many RNAs is very slow, often requiring minutes. In some cases, slow folding reflects the need to disrupt stable, but incorrect, interactions. However, a molecular explanation for slow folding in most RNAs is unknown. The specificity domain of the Bacillus subtilis RNase P ribozyme undergoes a rate-limiting folding step on the minute time-scale. This RNA also contains a C2′-endo nucleotide at A130 that exhibits extremely slow local conformational dynamics. This nucleotide is evolutionarily conserved and essential for tRNA recognition by RNase P. Here we show that deleting this single nucleotide accelerates folding by an order of magnitude even though this mutation does not change the global fold of the RNA. These results demonstrate that formation of a single stacking interaction at a C2′-endo nucleotide comprises the rate-determining step for folding an entire 154 nucleotide RNA. C2′-endo nucleotides exhibit slow local dynamics in structures spanning isolated helices to complex tertiary interactions. Because the motif is both simple and ubiquitous, C2′-endo nucleotides may function as molecular timers in many RNA folding and ligand recognition reactions.


2008 ◽  
Vol 19 (11) ◽  
pp. 4762-4775 ◽  
Author(s):  
Yu-shin Sou ◽  
Satoshi Waguri ◽  
Jun-ichi Iwata ◽  
Takashi Ueno ◽  
Tsutomu Fujimura ◽  
...  

Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12–Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.


2020 ◽  
Author(s):  
Li-Yao Huang ◽  
Duen-Wei Hsu ◽  
Catherine Pears

AbstractBackgroundTreatment of cells with hydroxamate-based lysine deacetylase inhibitors (KDACis) such as Trichostatin A (TSA) can induce biological effects such as differentiation or apoptosis of cancer cells, and a number of related compounds have been approved for clinical use. TSA treatment induces rapid initial acetylation of histone 3 (H3) proteins which are already modified by tri-methylation on lysine 4 (H3K4me3) while acetylation of bulk histones, lacking this mark, is delayed. Sgf29, a subunit of the SAGA acetyltransferase complex, interacts with H3K4me3 via a tandem tudor domain (TTD) and has been proposed to target the acetyltransferase activity to H3K4me3. However the importance of acetylation of this pool of H3 in the biological consequences of KDACi treatment is not known.ResultsWe investigated the role of H3K4me3-directed acetylation in the mechanism of action of TSA on inhibiting development of the eukaryotic social amoeba Dictyostelium discoideum. Loss of H3K4me3 in strains with mutations in the gene encoding Set1 or the histone proteins confers resistance to TSA-induced inhibition of development and delays accumulation of histone acetylation on H3K9 and K14. A candidate orthologue of Sgf29 in Dictyostelium has been identified which specifically recognizes the H3K4me3 modification via its tandem Tudor domain (TTD). Disruption of the gene encoding Sgf29 delayed accumulation of H3K9Ac, abolished targeted H3K4me3-directed H3Ac and led to developmental resistance to TSA, which is dependent on a functional TTD. TSA resistance also results from overexpression of Sgf29.ConclusionPreferential acetylation of H3K4me3 histones, regulated by Sgf29 via its TTD, is important in developmental sensitivity to TSA. Levels of H3K4me3 or Sgf29 will provide useful biomarkers for sensitivity to this class of chemotherapeutic drug.


Sign in / Sign up

Export Citation Format

Share Document