smad binding element
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 22 (12) ◽  
pp. 6502
Author(s):  
Beatriz Ballester ◽  
Javier Milara ◽  
Paula Montero ◽  
Julio Cortijo

Several transmembrane mucins have demonstrated that they contribute intracellularly to induce fibrotic processes. The extracellular domain of MUC16 is considered as a biomarker for disease progression and death in IPF patients. However, there is no evidence regarding the signalling capabilities of MUC16 that contribute to IPF development. Here, we demonstrate that MUC16 was overexpressed in the lung tissue of IPF patients (n = 20) compared with healthy subjects (n = 17) and localised in fibroblasts and hyperplastic alveolar type II cells. Repression of MUC16 expression by siRNA-MUC16 transfection inhibited the TGF-β1-induced fibrotic processes such as mesenchymal/ myofibroblast transformations of alveolar type II A549 cells and lung fibroblasts, as well as fibroblast proliferation. SiRNA-MUC16 transfection also decreased the TGF-β1-induced SMAD3 phosphorylation, thus inhibiting the Smad Binding Element activation. Immunoprecipitation assays and confocal immunofluorescence showed the formation of a protein complex between MUC16/p-SMAD3 in the cell membrane after TGF-β1 stimulation. This study shows that MUC16 is overexpressed in IPF and collaborates with the TGF-β1 canonical pathway to induce fibrotic processes. Therefore, direct or indirect targeting of MUC16 could be a potential drug target for human IPF.



Endocrinology ◽  
2021 ◽  
Author(s):  
Stephanie C Bohaczuk ◽  
Jessica Cassin ◽  
Theresa I Slaiwa ◽  
Varykina G Thackray ◽  
Pamela L Mellon

Abstract Follicle-stimulating hormone (FSH) is critical for fertility. Transcription of FSHB, the gene encoding the beta subunit, is rate-limiting in FSH production and is regulated by both gonadotropin-releasing hormone (GnRH) and activin. Activin signals through SMAD transcription factors. While the mechanisms and importance of activin signaling in mouse Fshb transcription are well-established, activin regulation of human FSHB is less well understood. We previously reported a novel enhancer of FSHB which contains a fertility-associated single nucleotide polymorphism (rs10031006) and requires a region resembling a full (8 base-pair) SMAD binding element (SBE). Here, we investigated the role of the putative SBE within the enhancer in activin and GnRH regulation of FSHB. In mouse gonadotrope-derived LβT2 cells, the upstream enhancer potentiated activin induction of both the human and mouse FSHB proximal promoters and conferred activin responsiveness to a minimal promoter. Activin induction of the enhancer required the SBE and was blocked by the inhibitory SMAD7, confirming involvement of the classical SMAD signaling pathway. GnRH induction of FSHB was also potentiated by the enhancer and dependent on the SBE, consistent with known activin/GnRH synergy regulating FSHB transcription. In DNA pull-down, the enhancer SBE bound SMAD4, and chromatin immunoprecipitation demonstrated SMAD4 enrichment at the enhancer in native chromatin. Combined activin/GnRH treatment elevated levels of the active transcriptional histone marker, histone 3 lysine 27 acetylation at the enhancer. Overall, this study indicates that the enhancer is directly targeted by activin signaling and identifies a novel, evolutionarily conserved mechanism by which activin and GnRH can regulate FSHB transcription.



2020 ◽  
Author(s):  
Spenser S Smith ◽  
Daniel Chu ◽  
Tiange Qu ◽  
Richard A Schneider

Developmental control of jaw length is critical for survival. The jaw skeleton arises from neural crest mesenchyme and previously we demonstrated that these progenitors upregulate bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when generating short quail beaks versus long duck bills. Inhibiting bone resorption or Mmp13 increases jaw length. Here, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of, and sensitivity to Transforming Growth Factor-Beta (TGFβ) signaling than duck; where mediators like SMADs and targets like Runx2, which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption. We discover a SMAD binding element in the quail Mmp13 promoter not found in duck and single nucleotide polymorphisms (SNPs) near a RUNX2 binding element that affect expression. Switching the SNPs and SMAD site abolishes TGFβ-sensitivity in the quail Mmp13 promoter but makes duck responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yeon Jung Kim ◽  
Min Jueng Kang ◽  
Eunah Kim ◽  
Tae Hyun Kweon ◽  
Yun Soo Park ◽  
...  

AbstractO-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification which occurs on the hydroxyl group of serine or threonine residues of nucleocytoplasmic proteins. It has been reported that the presence of this single sugar motif regulates various biological events by altering the fate of target proteins, such as their function, localization, and degradation. This study identified SMAD4 as a novel O-GlcNAc-modified protein. SMAD4 is a component of the SMAD transcriptional complex, a major regulator of the signaling pathway for the transforming growth factor-β (TGF-β). TGF-β is a powerful promoter of cancer EMT and metastasis. This study showed that the amount of SMAD4 proteins changes according to cellular O-GlcNAc levels in human lung cancer cells. This observation was made based on the prolonged half-life of SMAD4 proteins. The mechanism behind this interaction was that O-GlcNAc impeded interactions between SMAD4 and GSK-3β which promote proteasomal degradation of SMAD4. In addition, O-GlcNAc modification on SMAD4 Thr63 was responsible for stabilization. As a result, defects in O-GlcNAcylation on SMAD4 Thr63 attenuated the reporter activity of luciferase, the TGF-β-responsive SMAD binding element (SBE). This study’s findings imply that cellular O-GlcNAc may regulate the TGF-β/SMAD signaling pathway by stabilizing SMAD4.





2019 ◽  
Vol 65 (6) ◽  
pp. 477-484 ◽  
Author(s):  
S.P. Radko ◽  
S.A. Lapa ◽  
A.V. Chudinov ◽  
S.A. Khmeleva ◽  
M.M. Mannanova ◽  
...  

Using random (combinatorial) DNA-libraries with various degrees of diversity, it was shown that their amplification by polymerase chain reaction in real time resulted in appearance of a maximum on amplification curves. The relative decrease of fluorescence after passing the maximum was directly proportional to the logarithm of the number of oligonucleotide sequence variants in the random DNA-library provided that this number was within in the interval from 1 to 104 and remained practically unaltered when the number of variants was in the interval from 105 to 108. The obtained dependence was used in the course of SELEX to evaluate changes in the diversity of random DNA-libraries from round to round in selection of DNA-aptamers to the recombinant SMAD4 protein. As a result, oligonucleotides containing sequences able to form a site of SMAD4-DNA interactions known as SBE (SMAD-binding element) have been selected thus indicating that the SMAD4-SBE interaction dominates the aptamer selection.



2014 ◽  
Vol 28 (10) ◽  
pp. 1640-1655 ◽  
Author(s):  
Lacey L. Roybal ◽  
Arpi Hambarchyan ◽  
Jason D. Meadows ◽  
Nermeen H. Barakat ◽  
Patricia A. Pepa ◽  
...  

We previously identified FOXL2 as a critical component in FSHβ gene transcription. Here, we show that mice deficient in FOXL2 have lower levels of gonadotropin gene expression and fewer LH- and FSH-containing cells, but the same level of other pituitary hormones compared to wild-type littermates, highlighting a role of FOXL2 in the pituitary gonadotrope. Further, we investigate the function of FOXL2 in the gonadotrope cell and determine which domains of the FOXL2 protein are necessary for induction of FSHβ transcription. There is a stronger induction of FSHβ reporter transcription by truncated FOXL2 proteins, but no induction with the mutant lacking the forkhead domain. Specifically, FOXL2 plays a role in activin induction of FSHβ, functioning in concert with activin-induced SMAD proteins. Activin acts through multiple promoter elements to induce FSHβ expression, some of which bind FOXL2. Each of these FOXL2-binding sites is either juxtaposed or overlapping with a SMAD-binding element. We determined that FOXL2 and SMAD4 proteins form a higher order complex on the most proximal FOXL2 site. Surprisingly, two other sites important for activin induction bind neither SMADs nor FOXL2, suggesting additional factors at work. Furthermore, we show that FOXL2 plays a role in synergistic induction of FSHβ by GnRH and activin through interactions with the cJUN component of the AP1 complex that is necessary for GnRH responsiveness. Collectively, our results demonstrate the necessity of FOXL2 for proper FSH production in mice and implicate FOXL2 in integration of transcription factors at the level of the FSHβ promoter.



2011 ◽  
Vol 25 (6) ◽  
pp. 1006-1017 ◽  
Author(s):  
Antonio R. G. Susperregui ◽  
Cristina Gamell ◽  
Edgardo Rodríguez-Carballo ◽  
Maria José Ortuño ◽  
Ramon Bartrons ◽  
...  

Abstract Activation of p38 MAPK has been shown to be relevant for a number of bone morphogenetic protein (BMP) physiological effects. We report here the involvement of noncanonical phosphorylated mothers against decapentaplegic (Smad) signaling in the transcriptional induction of Cox2 (Ptgs2) by BMP-2 in mesenchymal cells and organotypic calvarial cultures. We demonstrate that different regulatory elements are required for regulation of Cox2 expression by BMP-2: Runt-related transcription factor-2 and cAMP response element sites are essential, whereas a GC-rich Smad binding element is important for full responsiveness. Efficient transcriptional activation requires cooperation between transcription factors because mutation of any element results in a strong decrease of BMP-2 responsiveness. BMP-2 activation of p38 leads to increased recruitment of activating transcription factor-2, Runx2, Smad, and coactivators such as p300 at the responsive sites in the Cox2 proximal promoter. We demonstrate, by either pharmacological or genetic analysis, that maximal BMP-2 effects on Cox2 and JunB expression require the function of p38 and its downstream effector mitogen/stress-activated kinase 1. Altogether our results strongly suggest that cooperative effects between canonical and noncanonical BMP signaling allow the fine-tuning of BMP transcriptional responses on specific target genes.





2010 ◽  
Vol 44 (6) ◽  
pp. 349-362 ◽  
Author(s):  
Ying Wang ◽  
Vanessa Libasci ◽  
Daniel J Bernard

Activins regulate FSH synthesis by stimulating the phosphorylation and nuclear accumulation of SMAD2 and SMAD3, which bind to a consensus SMAD-binding element in the proximal murine FSHβ (Fshb) subunit gene to drive transcription. Previous over-expression and in vitro DNA binding analyses suggested that SMAD4 participates in complexes with SMAD2 and SMAD3 to regulate Fshb expression. Here, we have characterized the role of endogenous SMAD4 in activin A induction of Fshb transcription in immortalized murine gonadotropes (LβT2). We identified five murine Smad4 mRNA isoforms, of which, four are newly described; however, the canonical full-length form predominated at both the mRNA and protein levels. Depletion of endogenous SMAD4 by RNA interference (RNAi) abolished activin A-induced Fshb promoter-reporter activity and greatly attenuated constitutively active activin type IB receptor-stimulated Fshb mRNA levels. The activin A response was rescued with an RNAi-resistant form of wild-type SMAD4, but not with a DNA-binding-deficient (Lys88Arg) SMAD4, suggesting that DNA binding by SMAD4 is necessary for activin induction of the Fshb gene. Though SMAD2 and SMAD3 are generally thought to partner with SMAD4 prior to accumulation in the nucleus, treatment with leptomycin B, an inhibitor of SMAD4 nuclear export, reduced but did not prevent activin A induction of Fshb mRNA levels or promoter activity. In addition, a constitutively nuclear form of SMAD4 rescued the effect of endogenous SMAD4 depletion. Collectively, these data demonstrate a necessary role for SMAD4 in activin A induction of the murine Fshb gene in immortalized gonadotropes.



Sign in / Sign up

Export Citation Format

Share Document