Human INHBB gene variant (c.1079T>C:p.Met360Thr) alters testis germ cell content, but does not impact fertility in mice

Endocrinology ◽  
2022 ◽  
Author(s):  
Brendan J Houston ◽  
Anne E O’Connor ◽  
Degang Wang ◽  
Georgia Goodchild ◽  
D Jo Merriner ◽  
...  

Abstract Testicular derived inhibin B (α/βB dimers) acts in an endocrine manner to suppress pituitary production of follicle stimulating hormone (FSH), by blocking the actions of activins (βA/B/βA/B dimers). Previously, we identified a homozygous genetic variant (c.1079T>C:p.Met360Thr) arising from uniparental disomy of chromosome 2 in the INHBB gene (βB-subunit of inhibin B and activin B) in a man suffering from infertility (azoospermia). In this study, we aimed to test the causality of the p.Met360Thr variant in INHBB and testis function. Here, we used CRISPR/Cas9 technology to generate Inhbb  M364T/M364T mice, where mouse INHBB p.Met364 corresponds with human p.Met360. Surprisingly, we found that the testes of male Inhbb  M364T/M364T mutant mice were significantly larger compared with those of aged-matched wildtype littermates at 12 and 24 weeks of age. This was attributed to a significant increase in Sertoli cell and round spermatid number and, consequently, seminiferous tubule area, in Inhbb  M364T/M364T males compared to wildtype males. Despite this testis phenotype, male Inhbb  M364T/M364T mutant mice retained normal fertility. Serum hormone analyses however, indicated that the Inhbb  M364T variant resulted in reduced circulating levels of activin B, but did not affect FSH production. We also examined the effect of this p.Met360Thr, and an additional INHBB variant (c.314C>T: p.Thr105Met) found in another infertile man, on inhibin B and activin B in vitro biosynthesis. It was found that both INHBB variants resulted in a significant disruption to activin B in vitro biosynthesis. Together, this analysis supports that INHBB variants that limit activin B production have consequences for testis composition in males.

Blood ◽  
1978 ◽  
Vol 51 (3) ◽  
pp. 539-547 ◽  
Author(s):  
DH Chui ◽  
SK Liao ◽  
K Walker

Abstract Erythroid progenitor cells in +/+ and Sl/Sld fetal livers manifested as burst-forming units-erythroid (BFU-E) and colony-forming units- erythroid (CFU-E) were assayed in vitro during early development. The proportion of BFU-E was higher as mutant than in normal fetal livers. On the other hand, the proportion of CFU-E was less in the mutant than in the normal. These results suggest that the defect in Sl/Sld fetal hepatic erythropoiesis is expressed at the steps of differentiation that effect the transition from BFU-E to CFU-E.


1986 ◽  
Vol 61 (1) ◽  
pp. 185-191 ◽  
Author(s):  
C. A. Hales ◽  
R. D. Brandstetter ◽  
C. F. Neely ◽  
M. B. Peterson ◽  
D. Kong ◽  
...  

Acute pulmonary and systemic vasomotor changes induced by endotoxin in dogs have been related, at least in part, to the production of eicosanoids such as the vasoconstrictor thromboxane and the vasodilator prostacyclin. Steroids in high doses, in vitro, inhibit activation of phospholipase A2 and prevent fatty acid release from cell membranes to enter the arachidonic acid cascade. We, therefore, administered methylprednisolone (40 mg/kg) to dogs to see if eicosanoid production and the ensuing vasomotor changes could be prevented after administration of 150 micrograms/kg of endotoxin. The stable metabolites of thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) were measured by radioimmunoassay. Methylprednisolone by itself did not alter circulating eicosanoids but when given 2.5 h before endotoxin not only failed to inhibit endotoxin-induced eicosanoid production but actually resulted in higher circulating levels of 6-keto-PGF1 alpha (P less than 0.05) compared with animals receiving endotoxin alone. Indomethacin prevented the steroid-enhanced concentrations of 6-keto-PGF1 alpha after endotoxin and prevented the greater fall (P less than 0.05) in systemic blood pressure and systemic vascular resistance with steroid plus endotoxin than occurred with endotoxin alone. Administration of methylprednisolone immediately before endotoxin resulted in enhanced levels (P less than 0.05) of both TxB2 and 6-keto-PGF1 alpha but with a fall in systemic blood pressure and vascular resistance similar to the animals pretreated by 2.5 h. In contrast to the early steroid group in which all of the hypotensive effect was due to eicosanoids, in the latter group steroids had an additional nonspecific effect. Thus, in vivo, high-dose steroids did not prevent endotoxin-induced increases in eicosanoids but actually increased circulating levels of TxB2 and 6-keto-PGF1 alpha with a physiological effect favoring vasodilation.


2020 ◽  
Vol 22 (1) ◽  
pp. 176
Author(s):  
Toshiaki Iba ◽  
Jerrold H. Levy ◽  
Koichiro Aihara ◽  
Katsuhiko Kadota ◽  
Hiroshi Tanaka ◽  
...  

(1) Background: The endothelial glycocalyx is a primary target during the early phase of sepsis. We previously reported a newly developed recombinant non-fucosylated antithrombin has protective effects in vitro. We further evaluated the effects of this recombinant antithrombin on the glycocalyx damage in an animal model of sepsis. (2) Methods: Following endotoxin injection, in Wistar rats, circulating levels of hyaluronan, syndecan-1 and other biomarkers were evaluated in low-dose or high-dose recombinant antithrombin-treated animals and a control group (n = 7 per group). Leukocyte adhesion and blood flow were evaluated with intravital microscopy. The glycocalyx was also examined using side-stream dark-field imaging. (3) Results: The activation of coagulation was inhibited by recombinant antithrombin, leukocyte adhesion was significantly decreased, and flow was better maintained in the high-dose group (both p < 0.05). Circulating levels of syndecan-1 (p < 0.01, high-dose group) and hyaluronan (p < 0.05, low-dose group; p < 0.01, high-dose group) were significantly reduced by recombinant antithrombin treatment. Increases in lactate and decreases in albumin levels were significantly attenuated in the high-dose group (p < 0.05, respectively). The glycocalyx thickness was reduced over time in control animals, but the derangement was attenuated and microvascular perfusion was better maintained in the high-dose group recombinant antithrombin group (p < 0.05). (4) Conclusions: Recombinant antithrombin maintained vascular integrity and the microcirculation by preserving the glycocalyx in this sepsis model, effects that were more prominent with high-dose therapy.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii286-iii286
Author(s):  
Caitlin Ung ◽  
Maria Tsoli ◽  
Jie Liu ◽  
Domenico Cassano ◽  
Dannielle Upton ◽  
...  

Abstract DIPGs are the most aggressive pediatric brain tumors. Currently, the only treatment is irradiation but due to its palliative nature patients die within 12 months. Effective delivery of chemotherapy across the blood-brain barrier (BBB) has been a key challenge for the eradication of this disease. We have developed a novel gold nanoparticle functionalised with human serum albumin (Au-NP, 98.8 ±19 nm) for the delivery of doxorubicin. In this study, we evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoparticles (Au-NP-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and Au-NP-Dox (at equimolar concentration) by alamar blue assay. Colony formation assays demonstrated a significantly more potent effect of Au-NP-Dox compared to doxorubicin alone, while the Au-NP had no effect. Furthermore, western blot analysis indicated increased apoptotic markers cleaved Parp, caspase 3/7 and phosphorylated H2AX in Au-NP-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of Au-NP-Dox compared to doxorubicin alone. Treatment of a DIPG orthotopic mouse model with Au-NP-Dox showed no signs of toxicity with stable weights being maintained during treatment. However, in contrast to the above in vitro findings the in vivo study showed no anti-tumor effect possibly due to poor penetration of Au-NP-Dox into the brain. We are currently evaluating whether efficacy can be improved using measures to open the BBB transiently. This study highlights the need for rigorous in vivo testing of new treatment strategies before clinical translation to reduce the risk of administration of ineffective treatments.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Minati Choudhury ◽  
Sakshi Dhingra Batra ◽  
Kriti Sikri ◽  
Anushree Gupta

Abstract Objective Endothelin-1 plays an important role in the pathogenesis of severe pulmonary hypertension. The + 139 ‘A’, adenine insertion variant in 5′UTR of edn1 gene has been reported to be associated with increased expression of Endothelin-1 in vitro. The aim of present study was to explore the association of this variant with the circulating levels of Endothelin-1 in vivo using archived DNA and plasma samples from 38 paediatric congenital heart disease (cyanotic and acyanotic) patients with severe pulmonary hypertension. Results The plasma Endothelin-1 levels were highly varied ranging from 1.63 to75.16 pg/ml. The + 139 ‘A’ insertion variant in 5′UTR of edn1 was seen in 8 out of 38 cases with only one acyanotic sample demonstrating homozygosity of inserted ‘A’ allele at + 139 site (4A/4A genotype). The plasma Endothelin-1 levels in children with homozygous variant 3A/3A genotype were comparable in cyanotic and acyanotic groups. Lone 4A/4A acyanotic sample had ET-1 levels similar to the median value of ET-1 associated with 3A/3A genotype and was absent in cyanotic group presumably due to deleterious higher ET-1 levels. The discussed observations, limited by the small sample size, are suggestive of homozygous adenine insertion variant posing a risk in cyanotic babies with Severe Pulmonary Hypertension.


2021 ◽  
Vol 9 (7) ◽  
pp. 1408
Author(s):  
Magali Van den Kerkhof ◽  
Philippe Leprohon ◽  
Dorien Mabille ◽  
Sarah Hendrickx ◽  
Lindsay B. Tulloch ◽  
...  

Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.


Sign in / Sign up

Export Citation Format

Share Document