scholarly journals Somatostatin Receptors 2 and 5 Are the Major Somatostatin Receptors in Insulinomas: An in Vivo and in Vitro Study

2003 ◽  
Vol 88 (11) ◽  
pp. 5353-5360 ◽  
Author(s):  
J. Bertherat ◽  
F. Tenenbaum ◽  
K. Perlemoine ◽  
C. Videau ◽  
J. L. Alberini ◽  
...  

Abstract Somatostatin (SRIF) receptors (sst) are present on normal pancreatic endocrine β-cells. However, the use of SRIF analogs in the scintigraphic imaging of insulinomas and in the medical management of these tumors seems to be restricted to a subgroup of patients. The aim of this study was to determine the prevalence of sst expression in vitro and characterize sst subtype binding in insulinomas and its correlation with in vivo sst receptor scintigraphy (SRS). In vitro studies were performed on 27 insulinomas from 25 patients: 22 with benign and three with malignant tumors. Semiquantitative RT-PCR of sst mRNAs was performed for 20 of these insulinomas. Sst2 and sst5 were expressed in 70%, sst1 in 50%, and sst3 and sst4 subtypes only in 15–20% of the tumors. 125I-Tyr0DTrp8SRIF14 binding was assessed by quantitative autoradiography in 18 insulinomas, and competition experiments were performed with SRIF14 and L797–591, L779–976, L796–778, L803–087, L817–818, selective agonists of the five sst subtypes, and BIM23244, a selective agonist of sst2 and sst5. Significant specific binding was observed in 72% of the insulinomas. Displacement experiments with ligands of higher affinity for each of the sst receptors revealed significant binding with the sst2 and sst5 ligands in 72%, sst3 in 44%, sst1 in 44%, and sst4 in 28% of cases. All insulinomas displaying sst2 binding were also sst5 sensitive. However, the ratio of sst5/sst2 displacement was variable and only equal to that for SRIF14 in experiments with the sst2/sst5 agonist BIM23244. SRS was performed 10 times in nine patients; it detected 60% of the tumors, including metastases of a malignant insulinoma. All the tumors detected by SRS displayed high levels of 125I-Tyr0DTrp8SRIF14 binding. The mechanisms underlying the loss of expression of sst2/sst5 in a third of insulinomas remains to be determined, but this loss of expression may be involved in β-cell dysfunction.

NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050163
Author(s):  
Hongkun Gao ◽  
Ping Fan ◽  
Qizhen Xu ◽  
Yiting Li ◽  
Jianxin Wang ◽  
...  

Melanoma, one of the most malignant tumors, is difficult to treat due to its high drug resistance. Silver nanoparticles (AgNPs) are widely used as antimicrobial agents in biomedical fields. In this study, the spherical AgNPs with average sizes of 5[Formula: see text]nm were prepared using a dopamine reduction method. The in vitro study shows that AgNPs with the concentrations of 0.5[Formula: see text][Formula: see text]g/mL and 1[Formula: see text][Formula: see text]g/mL exhibit good biocompatibility to 3T3L1 fibroblast cells. AgNPs with the same concentrations significantly inhibited the growth of B16 melanoma cells. In culture with B16 cells, AgNPs induced intracellular oxidative stress by generating the reactive oxygen species and reducing the superoxide dismutase, which further reduces the mitochondrial membrane potential. Moreover, the damage in mitochondria could activate mitochondrion-mediated cell apoptosis. The B16 cells apoptosis was analyzed by FITC-Annexin V/propidium iodide double staining assay, which confirms that AgNPs caused the abundance of apoptotic cells in different stages. Thus, AgNPs displayed the antitumor activity in vitro. Then, the therapeutic efficacy in vivo was evaluated in mice-bearing B16 melanoma tumors. The obtained results show the antitumor ability of AgNPs and provide a potential strategy for cancer treatment.


2014 ◽  
Author(s):  
Ivo Dumic-Cule ◽  
Dunja Rogic ◽  
Damir Jezek ◽  
Lovorka Grgurevic ◽  
Slobodan Vukicevic

2019 ◽  
Vol 19 (12) ◽  
pp. 950-960
Author(s):  
Soghra Farzipour ◽  
Seyed Jalal Hosseinimehr

Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.


Author(s):  
Thu Hang Lai ◽  
Magali Toussaint ◽  
Rodrigo Teodoro ◽  
Sladjana Dukić-Stefanović ◽  
Daniel Gündel ◽  
...  

Abstract Purpose The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. Methods [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. Results [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72–180 GBq/μmol. Autoradiography proved A2A receptor–specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 μg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. Conclusions The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elodie A. Pérès ◽  
Jérôme Toutain ◽  
Louis-Paul Paty ◽  
Didier Divoux ◽  
Méziane Ibazizène ◽  
...  

Abstract Background Diacetyl-bis(N4-methylthiosemicarbazone), labeled with 64Cu (64Cu-ATSM) has been suggested as a promising tracer for imaging hypoxia. However, various controversial studies highlighted potential pitfalls that may disable its use as a selective hypoxic marker. They also highlighted that the results may be tumor location dependent. Here, we first analyzed uptake of Cu-ATSM and its less lipophilic counterpart Cu-Cl2 in the tumor over time in an orthotopic glioblastoma model. An in vitro study was also conducted to investigate the hypoxia-dependent copper uptake in tumor cells. We then further performed a comprehensive ex vivo study to compare 64Cu uptake to hypoxic markers, specific cellular reactions, and also transporter expression. Methods μPET was performed 14 days (18F-FMISO), 15 days (64Cu-ATSM and 64Cu-Cl2), and 16 days (64Cu-ATSM and 64Cu-Cl2) after C6 cell inoculation. Thereafter, the brains were withdrawn for further autoradiography and immunohistochemistry. C6 cells were also grown in hypoxic workstation to analyze cellular uptake of Cu complexes in different oxygen levels. Results In vivo results showed that Cu-ASTM and Cu-Cl2 accumulated in hypoxic areas of the tumors. Cu-ATSM also stained, to a lesser extent, non-hypoxic regions, such as regions of astrogliosis, with high expression of copper transporters and in particular DMT-1 and CTR1, and also characterized by the expression of elevated astrogliosis. In vitro results show that 64Cu-ATSM showed an increase in the uptake only in severe hypoxia at 0.5 and 0.2% of oxygen while for 64Cu-Cl2, the cell retention was significantly increased at 5% and 1% of oxygen with no significant rise at lower oxygen percentages. Conclusion In the present study, we show that Cu-complexes undoubtedly accumulate in hypoxic areas of the tumors. This uptake may be the reflection of a direct dependency to a redox metabolism and also a reflection of hypoxic-induced overexpression of transporters. We also show that Cu-ATSM also stained non-hypoxic regions such as astrogliosis.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xiaoxiong Wang ◽  
Heping Wang ◽  
Jiajun Xu ◽  
Xu Hou ◽  
Haoqiang Zhan ◽  
...  

AbstractHigh-grade glioma is the most common and aggressive primary brain tumor in adults with poor therapeutic efficiency and survival prognosis. Cell division cycle associated 8 (CDCA8) has been well known as a cell cycle regulator and tumor promotor in various malignant tumors. However, its biological role in glioma still remains unclear. Our results showed that high level of CDCA8 was significantly correlated with advanced WHO grade and poor overall survival and disease-free survival prognosis. In vitro and in vivo investigations demonstrated that CDCA8 promoted the glioma malignancy by promoting cell proliferation, cell migration, and inhibiting cell apoptosis. Moreover, we found its synergetic biological protein—E2F1 by the gene microarray chip. In this study, we revealed that CDCA8 synergized with E2F1 facilitated the proliferation and migration of glioma. In conclusion, our study provides a novel promising therapeutic targets and prognostic biomarkers for malignant glioma treatment.


Sign in / Sign up

Export Citation Format

Share Document