Expression of the genes encoding the insulin-like growth factors (IGF-I and II), the IGF and insulin receptors, and IGF-binding proteins-1-6 and the localization of their gene products in normal and polycystic ovary syndrome ovaries.

1994 ◽  
Vol 78 (6) ◽  
pp. 1488-1496 ◽  
Author(s):  
A el-Roeiy ◽  
X Chen ◽  
V J Roberts ◽  
S Shimasakai ◽  
N Ling ◽  
...  
2005 ◽  
Vol 49 (5) ◽  
pp. 833-842 ◽  
Author(s):  
Angela M. Spinola e Castro ◽  
Gil Guerra-Júnior

Estudos in vitro e em animais sugerem que os membros do sistema insulin-like growth factors (IGFs), incluindo IGF-I, IGF-II, receptores de IGF-I e IGF-II (IGF-IR e IGF-IIR), e as IGF-binding proteins (IGFBPs) podem ter um importante envolvimento no desenvolvimento e na progressão de neoplasias. Mais especificamente, as IGFs promovem a progressão do ciclo celular e inibem a apoptose tanto por ação direta com outros fatores de crescimento como por ação indireta interagindo com outros sistemas moleculares intracelulares envolvidos na promoção e/ou progressão do câncer. Além disso, inúmeros estudos epidemiológicos têm sugerido que concentrações elevadas das IGFs, independente das alterações nas IGFBPs, podem estar associadas a um aumento no risco de desenvolver determinadas neoplasias. Esta revisão tem como objetivo apresentar o envolvimento do sistema IGF na regulação tumoral, os principais estudos epidemiológicos realizados e o risco de desenvolvimento de neoplasia em pacientes (com ou sem história pessoal de neoplasia prévia) que receberam hormônio de crescimento (rhGH). É importante salientar que o uso clínico de rhGH, nas indicações aprovadas internacionalmente, é seguro e não existem evidências, até o momento, da associação com o desenvolvimento de neoplasias.


1997 ◽  
Vol 107 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Steven V. Radecki ◽  
Marie C. Capdevielle ◽  
Frances C. Buonomo ◽  
Colin G. Scanes

Development ◽  
1987 ◽  
Vol 101 (1) ◽  
pp. 73-82
Author(s):  
E.P. Smith ◽  
T.W. Sadler ◽  
A.J. D'Ercole

Somatomedins/insulin-like growth factors (Sm/IGFs) are considered to have important roles in regulating fetal growth; however, because of limited quantities of tissue, few studies have been performed on their effects on embryonic growth. To assess a potential role for these factors, we evaluated mouse embryonic tissues for the presence of Sm/IGF and insulin receptors and Sm/IGF-binding proteins by chemical affinity labelling. In addition, we measured extractable Sm-C/IGF-I radioimmunoactivity in mouse embryonic tissues. Finally, we compared these data with those from the embryonal carcinoma cell line, PC13. All embryos from day 9 (3–4 somites) to day 12 (45 somites) possessed both Sm-C/IGF-I and IGF-II receptors in apparent greater abundance than insulin receptors. The visceral yolk sac appeared to have proportionally more insulin receptors than the corresponding embryonic tissue. Extracts from the embryos contained immunoreactive Sm-C/IGF-I and binding proteins of 30–45 X 10(3) Mr. PC13 cells possessed all three receptors and the apparent abundance of the insulin and IGF-II receptors was reduced after differentiation was induced with retinoic acid. PC13 cells released both immunoreactive Sm-C/IGF-I- and Sm-C/IGF-I-binding proteins into their medium. When differentiated, the binding proteins resembled the native ones extracted from the intact embryos. The presence of Sm/IGF activity, receptors and binding proteins in early embryogenesis suggests a role for these factors in embryonic growth. The PC13 cell line appears to only partially reflect normal development.


2005 ◽  
Vol 58 (11-12) ◽  
pp. 558-562 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Vera Todorovic ◽  
Danijela Vucevic ◽  
Branka Sikic

Introduction Growth is regulated by the interaction of environmental signals with endogenous neuroendocrine responses to the genetic programs that determine the body plan. The insulin-like growth factors (IGFs) are integral components of multiple systems controlling both growth and metabolism. The IGF system The IGF system is thought to be more complex than other endocrine systems, as genes for six IGF-binding proteins (IGFBPs) have been identified so far. The IGFs play a critical role in both cell cycle control and apoptosis, two functions involved in regulation of tumorigenesis. Insulin-like growth factor-I (IGF-I) is essential for normal growth. Confirmation of the significance of IGF-I in human physiology was obtained by the discovery of a patient with intrauterine growth retardation and postnatal growth failure associated with a mutation in the IGF-1 gene. Stages of evolution of the somatomedin hypothesis The original somatomedin hypothesis postulated that somatic growth was regulated by growth hormone's (GH's) stimulation of hepatic IGF-1 production, with IGF-1 acting in an endocrine fashion to promote growth. The dual effectors theory proposed an alternative view, involving direct effects by GH on peripheral tissues not mediated by IGF-1 and GH-stimulated local IGF-1 production for autocrine/paracrine action. It is now clear that G H stimulates the formation of ternary IGF binding complex, which stabilizes IGF-I in the serum.


2001 ◽  
Vol 168 (2) ◽  
pp. 297-306 ◽  
Author(s):  
C Beccavin ◽  
B Chevalier ◽  
LA Cogburn ◽  
J Simon ◽  
MJ Duclos

Insulin-like growth factors (IGFs) stimulate growth rate in a number of animal species and are likely to contribute to genetic variations of growth potential. The present study was designed to link levels of IGF-I and IGF-II mRNA and peptides with growth rate in divergently selected genotypes of chickens with high (HG) or low (LG) growth rates. Circulating IGF-I and -II and hepatic mRNA levels were measured under ad libitum feeding conditions from 1 to 12 weeks of age, and at 6 weeks of age under three different nutritional conditions (fed, fasted for 16 or 48 h, re-fed for 4 or 24 h after a 48-h fast). IGF binding proteins (IGFBPs) were also measured. Circulating IGFs increased with age and were higher in HG chickens from 1 to 6 weeks. They decreased with fasting and only IGF-II was fully restored after 24 h of re-feeding, while IGF-I remained low. A significant decrease in steady state IGF-I mRNA levels was also observed with fasting. Across the nutritional study, hepatic IGF-I mRNAs were significantly higher in HG chickens. Variations of IGF-II mRNA levels with nutritional state or genotype exhibited a similar trend. IGFBP (28, 34 and 40 kDa) levels increased with age, while only faint differences were observed between genotypes. IGFBP-28 transiently increased with fasting and was inversely related to blood glucose and insulin levels, suggesting that it is equivalent to mammalian IGFBP-1. In HG chickens, IGFBP-28 and IGFBP-34 levels decreased markedly following re-feeding. Therefore, high and low growth rates were respectively associated with high and low IGF-I and -II levels, supporting the hypothesis of a stimulatory role for both IGFs during post-hatching growth of chickens.


1993 ◽  
Vol 137 (2) ◽  
pp. 239-245 ◽  
Author(s):  
L. G. Moore ◽  
M. E. Mylek

ABSTRACT The measurement of insulin-like growth factors (IGFs) in plasma is complicated by the presence of high-affinity IGF-binding proteins (IGFBPs). Consequently, the IGFBPs need to be removed or their IGF-binding effects need to be neutralized prior to assaying samples for IGFs. It was observed that IGFs but not IGFBPs from sheep plasma bind to the size-exclusion gel Sephacryl S-100 HR at a low pH and that the IGFs can subsequently be eluted off at a neutral pH. From this observation a convenient method was developed for the extraction from plasma of ovine (o) IGF-I and -II free from detectable IGFBPs with close to 100% recovery. When assayed in homologous sheep IGF-I and -II radioimmunoassays the Sephacryl-extracted plasma samples gave dose–response curves which were parallel to purified oIGFs. Furthermore, the results obtained by Sephacryl extraction were highly correlated with those found by the established Sephadex G-75 extraction procedure. Journal of Endocrinology (1993) 137, 239–245


Sign in / Sign up

Export Citation Format

Share Document