scholarly journals SAT-292 Musashi: A Novel Regulator of the Gonadotrope Transcriptome

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Ana Rita Silva Moreira ◽  
Alexandra N Lagasse ◽  
Anessa C Haney ◽  
Nathan Avaritt ◽  
Stephanie Byrum ◽  
...  

Abstract Sufficient nutrition is critical for reproduction. We have previously shown that leptin, a circulating indicator of fat stores, signals to pituitary gonadotropes to maintain gonadotropin releasing hormone receptor (GnRHR) protein levels in female mice. We hypothesized that this process is post-transcriptional, happening primarily through regulation of the RNA-binding protein Musashi (MSI). We showed that MSI binds to Gnrhr and inhibits translation, and a gonadotrope-specific deletion of Msi1 and Msi2 (Gon-Msi1/2-null) leads to increased GnRHR protein levels. This culminates in dysregulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH). We have recently identified other gonadotrope and pituitary targets of MSI. We therefore suspected that MSI plays a role in both the maturation of gonadotropes and the normal cyclic regulation of gonadotropes. We hypothesized that the deletion of MSI would lead to downstream effects on (1) the composition of the gonadotrope population and (2) the molecular landscape of these cells. Using our adult, diestrous Gon-Msi1/2-null females, we performed single-cell RNA-sequencing on methanol-fixed dispersed pituitary cells. Libraries were made from two control pools and two mutant pools (n=3 pituitaries/pool) using 10x Genomics v3.1 Single-Cell Gene Expression technology and initially sequenced on an Illumina Next-seq mid-output flow-cell, yielding 5,000 reads/cell. Subsequent high-output sequencing obtained 25,000 reads/cell. We recovered single-cell mRNA transcript information from 18,206 control pituitary cells and 16,255 Gon-Msi1/2-null cells. Our analyses revealed that the Gon-Msi1/2-null pools had a higher % of cells expressing Fshb, as well as an expected significant drop in Msi2-expressing gonadotropes and no change in Lhb-expressing cells. We have recently identified Fshb as an MSI target in silico, and qRT-PCR of female pituitary lysate immunoprecipitated with anti-MSI1 shows a 7-fold enrichment in Fshb mRNA. We identified differentially expressed genes comparing the control and Gon-Msi1/2-null gonadotrope clusters. Using Gene Ontology analyses, the Gon-Msi1/2-null gonadotrope cluster appears to have aberrant expression of mRNAs involved in protein folding and cellular responses to nutrients. Our high-output sequencing has allowed us to achieve 25,000 reads/cell and will provide greater resolution of the role of Musashi in control of gonadotrope function. Taken together, our data indicate that Musashi influences the molecular landscape and subsequent physiology of the female gonadotrope. We have identified potential gonadotrope-specific MSI targets, including pathways that may underlie the dysregulated gonadotropin production and secretion seen in our Gon-Msi1/2-null females. Future studies will compare pubertal and adult females, as well as females from different estrous cycle stages.

2019 ◽  
Author(s):  
Trung Ngo Trong ◽  
Roger Kramer ◽  
Juha Mehtonen ◽  
Gerardo González ◽  
Ville Hautamäki ◽  
...  

ABSTRACTSingle-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single cell gene expression counts, such as bulk transcriptome data from the same tissue, or quantification of surface protein levels from the same cells. In this study, we propose models based on the Bayesian generative approach, where protein quantification available as CITE-seq counts from the same cells are used to constrain the learning process, thus forming a semi-supervised model. The generative model is based on the deep variational autoencoder (VAE) neural network architecture.


2021 ◽  
Vol 23 (7) ◽  
Author(s):  
Sally Yu Shi ◽  
Xin Luo ◽  
Tracy M. Yamawaki ◽  
Chi-Ming Li ◽  
Brandon Ason ◽  
...  

Abstract Purpose of Review Cardiac fibroblast activation contributes to fibrosis, maladaptive remodeling and heart failure progression. This review summarizes the latest findings on cardiac fibroblast activation dynamics derived from single-cell transcriptomic analyses and discusses how this information may aid the development of new multispecific medicines. Recent Findings Advances in single-cell gene expression technologies have led to the discovery of distinct fibroblast subsets, some of which are more prevalent in diseased tissue and exhibit temporal changes in response to injury. In parallel to the rapid development of single-cell platforms, the advent of multispecific therapeutics is beginning to transform the biopharmaceutical landscape, paving the way for the selective targeting of diseased fibroblast subpopulations. Summary Insights gained from single-cell technologies reveal critical cardiac fibroblast subsets that play a pathogenic role in the progression of heart failure. Combined with the development of multispecific therapeutic agents that have enabled access to previously “undruggable” targets, we are entering a new era of precision medicine.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 274-283
Author(s):  
Peng Yang ◽  
Jianhua Han ◽  
Shigeng Li ◽  
Shaoning Luo ◽  
Xusheng Tu ◽  
...  

Abstract Background Sepsis is a systemic inflammatory response that can lead to the dysfunction of many organs. The aberrant expression of miRNAs is associated with the pathogenesis of sepsis. However, the biological functions of miR-128-3p in sepsis remain largely unknown, and its mechanism should be further investigated. This study aimed to determine the regulatory network of miR-128-3p and TGFBR2 in lipopolysaccharide (LPS)-induced sepsis. Methods The expression levels of miR-128-3p and transforming growth factor beta receptors II (TGFBR2) were detected by quantitative polymerase chain reaction (qPCR). The protein levels of TGFBR2, Bcl-2, Bax, cleaved caspase 3, Smad2, and Smad3 were measured by western blot. Cell apoptosis was analyzed by flow cytometry. Cytokine production was detected by enzyme-linked immunosorbent assay (ELISA). The binding sites of miR-128-3p and TGFBR2 were predicted by Targetscan online software and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results The level of miR-128-3p was decreased, and TGFBR2 expression was increased in serum samples of sepsis patients and LPS-induced HK2 cells. Overexpression of miR-128-3p or knockdown of TGFBR2 ameliorated LPS-induced inflammation and apoptosis. Moreover, TGFBR2 was a direct target of miR-128-3p, and its overexpression reversed the inhibitory effects of miR-128-3p overexpression on inflammation and apoptosis in LPS-induced HK2 cells. Besides, overexpression of miR-128-3p downregulated TGFBR2 to suppress the activation of the Smad signaling pathway. Conclusion miR-128-3p could inhibit apoptosis and inflammation by targeting TGFBR2 in LPS-induced HK2 cells, which might provide therapeutic strategy for the treatment of sepsis.


2010 ◽  
Vol 18 (4) ◽  
pp. 675-685 ◽  
Author(s):  
Guoji Guo ◽  
Mikael Huss ◽  
Guo Qing Tong ◽  
Chaoyang Wang ◽  
Li Li Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document