scholarly journals Sex Disparities in Thermoregulatory and Metabolic Responses to Mild Cold Exposure Largely Explained by Differences in Body Mass and Body Surface Area

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A326-A326
Author(s):  
Yoanna M Ivanova ◽  
Tracy Swibas ◽  
François Haman ◽  
Kerry L Hildreth ◽  
Yubin Miao ◽  
...  

Abstract Sex-related differences in thermoregulatory responses to cold exposure, such as differences in metabolic heat production and fuel selection, are often attributed to differences in morphology and body composition. Whether these differences persist in response to cold when comparing lean, healthy men and women with equivalent total body mass (BM, heat producing capacity) and body surface areas (BSA, heat loss capacity) remains unknown. In this study, we aimed to compare thermoregulatory and metabolic responses to cold exposure in both men and women, before and after matching for BM (± 0.6 kg) and BSA (± 0.01 m2). Data included in this study were derived from four previously published studies and an additional 13 men and 23 women who recently completed an identical 3h mild cold exposure protocol. Included in the analyses were 45 healthy men and 23 healthy women [27 years (95% CI: 25 to 28) in men vs. 34 years (95% CI: 30 to 38) in women, P = 0.0003], including 7 men and women of the same age [28 years (95% CI: 22 to 34) vs. 29 years (95% CI: 22 to 37), P = 0.78] matched for BM and BSA. Using a combination of indirect calorimetry, electromyography and positron emission tomography with 11C-acetate and 18F-fluorodeoxyglucose, we quantified mean skin temperature, whole-body energy expenditure (EE), shivering intensity, brown adipose tissue (BAT) oxidative metabolism and glucose uptake. The cold-induced decrease in mean skin temperature was greater in women than men [-6.4°C (95% CI: -6.7 to -6.0) vs. -5.4°C (95% CI: -5.8 to -5.1), P = 0.0004], whereas EE was higher in men compared to women both during room temperature and cold exposure, with the cold-induced increase in EE being slightly greater in men than women [3.8 kJ·min-1 (95% CI: 3.2 to 4.5) vs. 2.8 kJ·min-1 (95% CI: 2.0 to 3.7), P = 0.07]. In contrast, shivering intensity (%MVC) was higher in women compared to men [3.0 %MVC (95% CI: 2.1 to 3.8) vs.1.8 %MVC (95% CI: 1.5 to 2.2), P = 0.0069]. Cold exposure also increased BAT oxidative index to a similar magnitude in men and women, increasing ~4-fold in men and ~3-fold in women (effect of sex, P = 0.2067). Both fractional glucose uptake [0.022 min-1 (95%CI: 0.017 to 0.027) in men and 0.021 min-1 (95%CI: 0.013 to 0.030) in women, P = 0.02] and net glucose uptake in BAT [92 nmol.g-1.min-1 (95%CI: 69 to 115) in men and 91 nmol.g-1.min-1 (95%CI: 53 to 129) in women] were not different between the sexes without or with matching for BM and BSA. The sex differences in mean skin temperature, energy expenditure and shivering intensity were all lost once participants were matched for BM and BSA. The present results suggest that much of the sexual dimorphism in thermoregulatory and metabolic responses to mild cold exposure can be explained by differences in BM and BSA.

Author(s):  
Claudia Irene Maushart ◽  
Jaël Rut Senn ◽  
Rahel Catherina Loeliger ◽  
Judith Siegenthaler ◽  
Fabienne Bur ◽  
...  

Abstract Context Thyroid hormone is crucial for the adaptation to cold. Objective To evaluate the effect of hyperthyroidism on resting energy expenditure (REE), cold-induced thermogenesis (CIT) and changes in body composition and weight. Design Prospective cohort study. Setting Endocrine outpatient clinic at tertiary referral center. Patients Eighteen patients with overt hyperthyroidism. Main Outcome Measures We measured REE during hyperthyroidism, after restoring euthyroid TH levels and after 3 months of normal thyroid function. In fourteen patients energy expenditure (EE) was measured before and after a mild cold exposure of two hours and CIT was the difference between EEcold and EEwarm. Skin temperatures at eight positions were recorded during the study visits. Body composition was assessed by dual X-ray absorption. Results Free T4 (fT4) and free T3 (fT3) decreased significantly over time (fT4, p=0.0003; fT3, p=0.0001). REE corrected for lean body mass (LBM) decreased from 42 ± 6.7 kcal/24h/kg LBM in the hyperthyroid to 33±4.4 kcal/24h/kg LBM (-21%, p<0.0001 vs hyperthyroid) in the euthyroid state and three months later to 33 ± 5.2 kcal/24h/kg LBM (-21%, p=0.0022 vs. hyperthyroid, overall p<0.0001). Free T4 (p=0.0001) and free T3 (p<0.0001) were predictors of REE. CIT did not change from the hyperthyroid to the euthyroid state (p=0.96). Hyperthyroidism led to increased skin temperature at warm ambient conditions but did not alter core body temperature, nor skin temperature after cold exposure. Weight regain and body composition were not influenced by REE and CIT during the hyperthyroid state. Conclusions CIT is not increased in patients with overt hyperthyroidism.


2005 ◽  
Vol 99 (1) ◽  
pp. 349-356 ◽  
Author(s):  
Calvin C. Kuo ◽  
Jill A. Fattor ◽  
Gregory C. Henderson ◽  
George A. Brooks

To evaluate the hypothesis that lipid oxidation predominates in postexercise recovery, we examined healthy men ( n = 6; age = 21.2 ± 0.6 yr) and women ( n = 6; age = 22.8 ± 2.1 yr) during and after two exercise tasks [89 min at 45% and 60 min at 65% of peak rate of oxygen consumption (V̇o2 peak)] as well as a time-matched resting control trial (Con). Exercise bouts were matched for energy expenditure. Respiratory exchange ratios (RER) during exercise at 65% V̇o2 peak for both men and women (0.95 ± 0.01 and 0.93 ± 0.02) were significantly higher than 45% V̇o2 peak (0.89 ± 0.01 and 0.86 ± 0.02) and Con trials (0.86 ± 0.01 and 0.86 ± 0.02, respectively). During recovery, for men RER values were 0.78 ± 0.01 and 0.76 ± 0.01 after 45% and 65% exercise, respectively. For women, values were 0.79 ± 0.01 and 0.78 ± 0.01. These were significantly lower than during both the preexercise resting period and the corresponding no-exercise Con period (0.82 ± 0.01 and 0.83 ± 0.01, mean RER for men and women, respectively). Hence, the contribution of lipid oxidation to energy supply increased significantly during recovery compared with preexercise levels, and it was greater after exercise than during the time-matched, no-exercise Con period. It is concluded that, although carbohydrate is the major fuel source during moderate- to high-intensity exercise, 1) there is substantial postexercise lipid oxidation; and 2) lipid oxidation is the same during postexercise recovery whether the relative power output is 45% or 65% of V̇o2 peak when energy expenditure of exercise is matched.


2012 ◽  
Vol 113 (5) ◽  
pp. 1257-1269 ◽  
Author(s):  
Sibella G. King ◽  
Kiran D. K. Ahuja ◽  
Jezreel Wass ◽  
Cecilia M. Shing ◽  
Murray J. Adams ◽  
...  

2006 ◽  
Vol 290 (1) ◽  
pp. R172-R179 ◽  
Author(s):  
Glen P. Kenny ◽  
Jane E. Murrin ◽  
W. Shane Journeay ◽  
Francis D. Reardon

The purpose of this study was to evaluate the possible differences in the postexercise cutaneous vasodilatory response between men and women. Fourteen subjects (7 men and 7 women) of similar age, body composition, and fitness status remained seated resting for 15 min or cycled for 15 min at 70% of peak oxygen consumption followed by 15 min of seated recovery. Subjects then donned a liquid-conditioned suit. Mean skin temperature was clamped at ∼34°C for 15 min. Mean skin temperature was then increased at a rate of 4.3 ± 0.8°C/h while local skin temperature was clamped at 34°C. Skin blood flow was measured continuously at two forearm skin sites, one with (UT) and without (BT) (treated with bretylium tosylate) intact α-adrenergic vasoconstrictor activity. The exercise threshold for cutaneous vasodilation in women (37.51 ± 0.08°C and 37.58 ± 0.04°C for UT and BT, respectively) was greater than that measured in men (37.33 ± 0.06°C and 37.35 ± 0.06°C for UT and BT, respectively) ( P < 0.05). Core temperatures were similar to baseline before the start of whole body warming for all conditions. Postexercise heart rate (HR) for the men (77 ± 4 beats/min) and women (87 ± 6 beats/min) were elevated above baseline (61 ± 3 and 68 ± 4 beats/min for men and women, respectively), whereas mean arterial pressure (MAP) for the men (84 ± 3 mmHg) and women (79 ± 3 mmHg) was reduced from baseline (93 ± 3 and 93 ± 4 mmHg for men and women, respectively) ( P < 0.05). A greater increase in HR and a greater decrease in the MAP postexercise were noted in women ( P < 0.05). No differences in core temperature, HR, and MAP were measured in the no-exercise trial. The postexercise threshold for cutaneous vasodilation measured at the UT and BT sites for men (37.15 ± 0.03°C and 37.16 ± 0.04°C, respectively) and women (37.36 ± 0.05°C and 37.42 ± 0.03°C, respectively) were elevated above no exercise (36.94 ± 0.07°C and 36.97 ± 0.05°C for men and 36.99 ± 0.09°C and 37.03 ± 0.11°C for women for the UT and BT sites, respectively) ( P < 0.05). A difference in the magnitude of the thresholds was measured between women and men ( P < 0.05). We conclude that women have a greater postexercise onset threshold for cutaneous vasodilation than do men and that the primary mechanism influencing the difference between men and women in postexercise skin blood flow is likely the result of an altered active vasodilatory response and not an increase in adrenergic vasoconstrictor tone.


2016 ◽  
Vol 5 (2) ◽  
pp. 65-73 ◽  
Author(s):  
M Langeveld ◽  
C Y Tan ◽  
M R Soeters ◽  
S Virtue ◽  
G K Ambler ◽  
...  

Background Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. Objective To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared thermography. Methods We exposed healthy volunteers to either a single episode of environmental mild cold or thermoneutrality. We measured hunger sensation and actual free food intake. After a thermoneutral overnight stay, five males and five females were exposed to either 18°C (mild cold) or 24°C (thermoneutrality) for 2.5 h. Metabolic rate, vital signs, skin temperature, blood biochemistry, cold and hunger scores were measured at baseline and for every 30 min during the temperature intervention. This was followed by an ad libitum meal to obtain the actual desired energy intake after cold exposure. Results We could replicate the cold-induced increase in REE. But no differences were detected in hunger, food intake, or satiety after mild cold exposure compared with thermoneutrality. After long-term cold exposure, high cold sensation scores were reported, which were negatively correlated with thermogenesis. Skin temperature in the sternal area was tightly correlated with the increase in energy expenditure. Conclusions It is concluded that short-term mild cold exposure increases energy expenditure without changes in food intake. Mild cold exposure resulted in significant thermal discomfort, which was negatively correlated with the increase in energy expenditure. Moreover, there is a great between-subject variability in cold response. These data provide further insights on cold exposure as an anti-obesity measure.


2001 ◽  
Vol 131 (6) ◽  
pp. 1833-1838 ◽  
Author(s):  
Sai Krupa Das ◽  
Julio C. Moriguti ◽  
Megan A. McCrory ◽  
Edward Saltzman ◽  
Christopher Mosunic ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
L. E. Hammond ◽  
S. Cuttell ◽  
P. Nunley ◽  
J. Meyler

This study explored whether anthropometric measures influence magnitude of skin cooling following exposure to whole body cryotherapy (WBC). Height, weight, body fat percentage, and lean mass were measured in 18 male and 14 female participants. Body surface area, body surface area to mass ratio, body mass index, fat-free mass index, and fat mass index were calculated. Thermal images were captured before and after WBC (−60°C for 30 seconds, −110°C for 2 minutes). Skin temperature was measured at the chest, arm, thigh, and calf. Mean skin temperature before and after WBC and change in mean skin temperature(ΔTsk)were calculated.ΔTskwas significantly greater in females (12.07±1.55°C) than males (10.12±1.86°C;t(30)=-3.09,P=.004). A significant relationship was observed between body fat percentage andΔTskin the combined dataset (P=.002,r=.516) and between fat-free mass index andΔTskin males (P=.005,r=.622). No other significant associations were found. Skin response of individuals to WBC appears to depend upon anthropometric variables and sex, with individuals with a higher adiposity cooling more than thinner individuals. Effects of sex and anthompometrics should be considered when designing WBC research or treatment protocols.


1989 ◽  
Vol 67 (4) ◽  
pp. 382-393 ◽  
Author(s):  
Ludwik Jan Bukowiecki

The effects of cold exposure, exercise training, and diet (high fat versus high carbohydrate) on glucose tolerance and glucose metabolism in rat peripheral tissues will be briefly reviewed. Stimulation of energy expenditure by cold exposure (4 °C) or exercise training generally leads to decreased plasma insulin levels and to an improvement in glucose tolerance, suggesting that insulin action on peripheral tissues is increased when energy expenditure is stimulated. On the contrary, feeding high-fat diets to sedentary rats living in the warm (25 °C) induces hyperinsulinemia and insulin resistance resulting in a marked deterioration of glucose tolerance. Nevertheless, cold exposure reverses the diabetogenic effects of high-fat feeding, demonstrating that nutrition-induced insulin resistance is amplified in sedentary animals living at temperatures close to thermoneutrality. Radioactive tracer studies of 2-deoxyglucose uptake in peripheral tissues revealed that cold exposure synergistically potentiates the effects of insulin on glucose uptake in skeletal muscles as well as in white and brown adipose tissues. However, more recent data showed that cold exposure improves glucose tolerance and stimulates glucose uptake in starved animals (ie., in the virtual absence of circulating insulin) nearly by the same order of magnitude as in fed animals. It is therefore concluded that cold exposure, and possibly also exercise, improve glucose tolerance and stimulate glucose uptake in peripheral tissues primarily by enhancing glucose oxidation via insulin-independent pathways, and secondarily by increasing the responsiveness of peripheral tissues to insulin.Key words: insulin, brown adipose tissue, skeletal muscle, 2-deoxyglucose, diabetes.


Sign in / Sign up

Export Citation Format

Share Document