scholarly journals Overexpression of an N-Terminally Truncated Isoform of the Nuclear Receptor Coactivator Amplified in Breast Cancer 1 Leads to Altered Proliferation of Mammary Epithelial Cells in Transgenic Mice

2005 ◽  
Vol 19 (3) ◽  
pp. 644-656 ◽  
Author(s):  
Maddalena T. Tilli ◽  
Ronald Reiter ◽  
Annabell S. Oh ◽  
Ralf T. Henke ◽  
Kevin McDonnell ◽  
...  

Abstract Amplified in breast cancer 1 (AIB1, also known as ACTR, SRC-3, RAC-3, TRAM-1, p/CIP) is a member of the p160 nuclear receptor coactivator family involved in transcriptional regulation of genes activated through steroid receptors, such as estrogen receptor α (ERα). The AIB1 gene and a more active N-terminally deleted isoform (AIB1-Δ3) are overexpressed in breast cancer. To determine the role of AIB1-Δ3 in breast cancer pathogenesis, we generated transgenic mice with human cytomegalovirus immediate early gene 1 (hCMVIE1) promoter-driven over-expression of human AIB1/ACTR-Δ3 (CMVAIB1/ACTR-Δ3 mice). AIB1/ACTR-Δ3 transgene mRNA expression was confirmed in CMV-AIB1/ACTR-Δ3 mammary glands by in situ hybridization. These mice demonstrated significantly increased mammary epithelial cell proliferation (P < 0.003), cyclin D1 expression (P = 0.002), IGF-I receptor protein expression (P = 0.026), mammary gland mass (P < 0.05), and altered expression of CCAAT/enhancer binding protein isoforms (P = 0.029). At 13 months of age, mammary ductal ectasia was found in CMV-AIB1/ACTR-Δ3 mice, but secondary and tertiary branching patterns were normal. There were no changes in the expression patterns of either ERα or Stat5a, a downstream mediator of prolactin signaling. Serum IGF-I levels were not altered in the transgenic mice. These data indicate that overexpression of the AIB1/ACTR-Δ3 isoform resulted in altered mammary epithelial cell growth. The observed changes in cell proliferation and gene expression are consistent with alterations in growth factor signaling that are thought to contribute to either initiation or progression of breast cancer. These results are consistent with the hypothesis that the N-terminally deleted isoform of AIB1 can play a role in breast cancer development and/or progression.

2006 ◽  
Vol 20 (10) ◽  
pp. 2304-2314 ◽  
Author(s):  
Wei Wu ◽  
Min Zou ◽  
Deanna R. Brickley ◽  
Travis Pew ◽  
Suzanne D. Conzen

Abstract Activation of the glucocorticoid receptor (GR) plays a critical role in the stress response of virtually all cell types. Despite recent advances in large-scale genomic and proteomic data acquisition, identification of physiologically relevant molecular events downstream of nuclear hormone receptor activation remains challenging. By analyzing gene expression changes 30 min after dexamethasone (Dex) treatment, we previously found that immediate induction of serum and glucocorticoid-regulated kinase-1 (SGK-1) expression is required for GR-mediated mammary epithelial cell survival signaling. We now report that activation of the GR mediates Forkhead transcription factor 3a (FOXO3a) phosphorylation and inactivation in mammary epithelial cells. GR-mediated induction of SGK-1 expression is required for FOXO3a inactivation; additional growth factor stimulation is not required. To further explore the gene expression changes that occur downstream of GR-mediated FOXO3a inactivation, we analyzed temporal gene expression data and selected GR-down-regulated genes containing core FOXO3a binding motifs in their proximal promoters. This approach revealed several previously unrecognized transcriptional target genes of FOXO3a, including IGF binding protein-3 (IGFBP-3). Endogenous IGFBP-3 expression was confirmed to be dependent on the GR-SGK-1-FOXO3a signaling pathway. Moreover, GR activation decreased FOXO3a-induced apoptosis in SK-BR-3 breast cancer cells. Collectively, our data suggest that GR-mediated FOXO3a inactivation is an important mechanism contributing to glucocorticoid-mediated mammary epithelial cell survival.


2005 ◽  
Vol 171 (4) ◽  
pp. 663-673 ◽  
Author(s):  
Wa Xian ◽  
Kathryn L. Schwertfeger ◽  
Tracy Vargo-Gogola ◽  
Jeffrey M. Rosen

Members of the fibroblast growth factor (FGF) family and the FGF receptors (FGFRs) have been implicated in mediating various aspects of mammary gland development and transformation. To elucidate the molecular mechanisms of FGFR1 action in a context that mimics polarized epithelial cells, we have developed an in vitro three-dimensional HC11 mouse mammary epithelial cell culture model expressing a drug-inducible FGFR1 (iFGFR1). Using this conditional model, iFGFR1 activation in these growth-arrested and polarized mammary acini initially led to reinitiation of cell proliferation, increased survival of luminal cells, and loss of cell polarity, resulting in the disruption of acinar structures characterized by the absence of an empty lumen. iFGFR1 activation also resulted in a gain of invasive properties and the induction of matrix metalloproteinase 3 (MMP-3), causing the cleavage of E-cadherin and increased expression of smooth muscle actin and vimentin. The addition of a pan MMP inhibitor abolished these phenotypes but did not prevent the effects of iFGFR1 on cell proliferation or survival.


Sign in / Sign up

Export Citation Format

Share Document