scholarly journals Transactivation of the Epidermal Growth Factor Receptor Is Involved in the Lutropin Receptor-Mediated Down-Regulation of Ovarian Aromatase Expression in Vivo

2010 ◽  
Vol 24 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Nebojsa Andric ◽  
Mika Thomas ◽  
Mario Ascoli

Abstract Ovarian follicular development and differentiation is characterized by dramatic changes in aromatase (Cyp19a1) expression. In preovulatory follicles, activation of the FSH receptor increases aromatase expression until the surge of LH decreases it. Here we provide in vivo evidence that down-regulation of Cyp19a1 by the LH surge requires efficient signaling through the epidermal growth factor receptor (EGFR). The human chorionic gonadotropin (hCG)-induced down-regulation of Cyp19a1 expression in the two different mouse models with inactivating mutations of the EGFR (wa2 and velvet) is impaired but not abolished. The hCG-induced phosphorylation of ovarian ERK1/2, expression of C/EBPβ, and the phosphorylation of Connexin43 (two downstream targets of ERK1/2 action) are also decreased in these two mouse models. In contrast, disruption of EGFR signaling does not have any affect on the hCG-induced phosphorylation of cAMP response element-binding protein or AKT. This study provides the first in vivo evidence linking the LH receptor, the EGFR, and ERK1/2 as sequential components of a pathway that regulates ovarian Cyp19a1 expression.

1986 ◽  
Vol 261 (18) ◽  
pp. 8473-8480
Author(s):  
D G Kay ◽  
W H Lai ◽  
M Uchihashi ◽  
M N Khan ◽  
B I Posner ◽  
...  

2004 ◽  
Vol 15 (5) ◽  
pp. 2143-2155 ◽  
Author(s):  
Anuradha Gullapalli ◽  
Tiana A. Garrett ◽  
May M. Paing ◽  
Courtney T. Griffin ◽  
Yonghua Yang ◽  
...  

Sorting nexin 1 (SNX1) and SNX2, homologues of the yeast vacuolar protein-sorting (Vps)5p, contain a phospholipid-binding motif termed the phox homology (PX) domain and a carboxyl terminal coiled-coil region. A role for SNX1 in trafficking of cell surface receptors from endosomes to lysosomes has been proposed; however, the function of SNX2 remains unknown. Toward understanding the function of SNX2, we first examined the distribution of endogenous protein in HeLa cells. We show that SNX2 resides primarily in early endosomes, whereas SNX1 is found partially in early endosomes and in tubulovesicular-like structures distributed throughout the cytoplasm. We also demonstrate that SNX1 interacts with the mammalian retromer complex through its amino terminal domain, whereas SNX2 does not. Moreover, activated endogenous epidermal growth factor receptor (EGFR) colocalizes markedly with SNX2-positive endosomes, but minimally with SNX1-containing vesicles. To assess SNX2 function, we examined the effect of a PX domain-mutated SNX2 that is defective in vesicle localization on EGFR trafficking. Mutant SNX2 markedly inhibited agonist-induced EGFR degradation, whereas internalization remained intact. In contrast, SNX1 PX domain mutants failed to effect EGFR degradation, whereas a SNX1 deletion mutant significantly inhibited receptor down-regulation. Interestingly, knockdown of SNX1 and SNX2 expression by RNA interference failed to alter agonist-induced EGFR down-regulation. Together, these findings suggest that both SNX1 and SNX2 are involved in regulating lysosomal sorting of internalized EGFR, but neither protein is essential for this process. These studies are the first to demonstrate a function for SNX2 in protein trafficking.


2020 ◽  
Author(s):  
Lei Wang ◽  
Xusha Zhou ◽  
Weixuan Zou ◽  
Yinglin Wu ◽  
Jing Zhao ◽  
...  

Abstract Background: Exosomes are small, cellular membrane-derived vesicles with a diameter of 50-150 nm. Exosomes are considered ideal drug delivery systems with a wide range of applications in various diseases, including cancer. However, nonspecific delivery of therapeutic agents by exosomes in vivo remains challenging. H uman epidermal growth factor receptor 2 (HER2) is an epidermal growth factor receptor tyrosine kinase, and its overexpression is usually associated with cell survival and tumor progression in various cancers. In this study, we aim to develop novel exosomes with dual HER2-targeting ability as a nanoparticle delivery vehicle to enhance antitumor efficacy in vivo . Results: Here, we report the generation of two kinds of exosomes carrying miRNAs designed to block HER2 synthesis and consequently kill tumor cells. 293-miR-HER2 exosomes package and deliver designed miRNAs to cells to block HER2 synthesis. These exosomes kill cancer cells dependent on HER2 for survival but do not affect cells that lack HER2 or that are engineered to express HER2 but are not dependent on it for survival. In contrast, 293-miR-XS-HER2 exosomes carry an additional peptide, which enables them to adhere to HER2 on the surface of cancer cells. Consequently, these exosomes preferentially enter and kill cells with surface expression of HER2. 293-miR-XS-HER2 exosomes are significantly more effective than the 293-miR-HER2 exosomes in shrinking HER2-positive tumors implanted in mice. Conclusions: Collectively, as novel antitumor drug delivery vehicles, HER2 dual-targeting exosomes exhibit increased target-specific delivery efficiency and can be further utilized to develop new nanoparticle-based targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document