scholarly journals Modulation of intrinsic resting-state fMRI networks in women with chronic migraine

Neurology ◽  
2017 ◽  
Vol 89 (2) ◽  
pp. 163-169 ◽  
Author(s):  
X. Michelle Androulakis ◽  
Kaitlin Krebs ◽  
B. Lee Peterlin ◽  
Tianming Zhang ◽  
Nasim Maleki ◽  
...  

Objective:To evaluate the intrinsic resting functional connectivity of the default mode network (DMN), salience network (SN), and central executive network (CEN) network in women with chronic migraine (CM), and whether clinical features are associated with such abnormalities.Methods:We analyzed resting-state connectivity in 29 women with CM as compared to age- and sex-matched controls. Relationships between clinical characteristics and changes in targeted networks connectivity were evaluated using a multivariate linear regression model.Results:All 3 major intrinsic brain networks were less coherent in CM (DMN: p = 0.030, SN: p = 0.007, CEN: p = 0.002) as compared to controls. When stratified based on medication overuse headache (MOH) status, CM without MOH (DMN: p = 0.029, SN: p = 0.023, CEN: p = 0.003) and CM with MOH (DMN: p = 0.016, SN: p = 0.016, CEN: p = 0.015) were also less coherent as compared to controls. There was no difference in CM with MOH as compared to CM without MOH (DMN: p = 0.382, SN: p = 0.408, CEN: p = 0.419). The frequency of moderate and severe headache days was associated with decreased connectivity in SN (p = 0.003) and CEN (p = 0.015), while cutaneous allodynia was associated with increased connectivity in SN (p = 0.011).Conclusions:Our results demonstrated decreased overall resting-state functional connectivity of the 3 major intrinsic brain networks in women with CM, and these patterns were associated with frequency of moderate to severe headache and cutaneous allodynia.

2021 ◽  
Author(s):  
Yi Zhao ◽  
Mary Beth Nebel ◽  
Brian S. Caffo ◽  
Stewart H. Mostofsky ◽  
Keri S. Rosch

AbstractWe applied a novel Covariate Assisted Principal (CAP) whole-matrix regression approach to identify resting-state functional connectivity (FC) brain networks associated with attention-deficit/hyperactivity disorder (ADHD) and response control. Participants included 8-12 year-old children with ADHD (n=115, 29 girls) and typically developing controls (n=102, 35 girls) with a resting-state fMRI scan and go/no-go task behavioral data. We modeled three sets of covariates to identify resting-state networks associated with ADHD, age, sex, and response control. Four networks were identified across models revealing complex interactions between subregions of cognitive control, default mode, subcortical, visual, and somatomotor networks that relate to age, response control, and a diagnosis of ADHD among girls and boys. Unique networks were also identified in each of the three models suggesting some specificity to the covariates of interest. These findings demonstrate the utility of our novel covariance regression approach to studying functional brain networks relevant for development, behavior, and psychopathology.


2020 ◽  
Author(s):  
Jian Kong ◽  
Yiting Huang ◽  
Jiao Liu ◽  
Siyi Yu ◽  
Ming Cheng ◽  
...  

Abstract Background: This study aims to investigate the resting state functional connectivity (rsFC) changes of the hypothalamus in Fibromyalgia patients and the modulation effect of effective treatments. Methods: Fibromyalgia patients and matched healthy controls (HC’s) were recruited. Resting state fMRI data were collected from fibromyalgia patients before and after a 12-week Tai Chi intervention and once from HC’s. Results: Data analysis showed that fibromyalgia patients displayed significantly decreased medial hypothalamus (MH) rsFC with the thalamus and amygdala when compared to HC’s at baseline. After the intervention, fibromyalgia patients showed increased (normalized) MH rsFC in the thalamus and amygdala. Effective connectivity analysis showed disrupted MH and thalamus interaction in fibromyalgia, which nonetheless could be partially restored by Tai Chi. Conclusions: Elucidating the role of the diencephalon and limbic system in the pathophysiology and development of fibromyalgia may facilitate the development of new treatment methods for this prevalent disorder. Trial registration: Trial registration ClinicalTrials.gov Identifier: NCT02407665. Registered 3 April 2015 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02407665


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


Author(s):  
Lisa Parikh ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Renata Belfort-DeAguiar ◽  
Derek Groskreutz ◽  
...  

Abstract Context Individuals with type 1 diabetes (T1DM) have alterations in brain activity which have been postulated to contribute to the adverse neurocognitive consequences of T1DM; however, the impact of T1DM and hypoglycemic unawareness on the brain’s resting state activity remains unclear. Objective To determine whether individuals with T1DM and hypoglycemia unawareness (T1DM-Unaware) had changes in the brain resting state functional connectivity compared to healthy controls (HC) and those with T1DM and hypoglycemia awareness (T1DM-Aware). Design Observational study Setting Academic medical center Participants 27 individuals with T1DM and 12 healthy control volunteers participated in the study. Intervention All participants underwent BOLD resting state fMRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60mg/dl) clamp. Outcome Changes in resting state functional connectivity Results Using two separate methods of functional connectivity analysis, we identified distinct differences in the resting state brain responses to mild hypoglycemia amongst HC, T1DM-Aware and T1DM-Unaware participants, particularly in the angular gyrus, an integral component of the default mode network (DMN). Furthermore, changes in angular gyrus connectivity also correlated with greater symptoms of hypoglycemia (r = 0.461, P = 0.003) as well as higher scores of perceived stress (r = 0.531, P = 0.016). Conclusion These findings provide evidence that individuals with T1DM have changes in the brain’s resting state connectivity patterns, which may be further associated with differences in awareness to hypoglycemia. These changes in connectivity may be associated with alterations in functional outcomes amongst individuals with T1DM.


2019 ◽  
Vol 33 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Jue Wang ◽  
Hai-Jiang Meng ◽  
Gong-Jun Ji ◽  
Ying Jing ◽  
Hong-Xiao Wang ◽  
...  

Abstract Both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have been used to non-invasively localize the human motor functional area. These locations can be clinically used as stimulation target of TMS treatment. However, it has been reported that the finger tapping fMRI activation and TMS hotspot were not well-overlapped. The aim of the current study was to measure the distance between the finger tapping fMRI activation and the TMS hotspot, and more importantly, to compare the network difference by using resting-state fMRI. Thirty healthy participants underwent resting-state fMRI, task fMRI, and then TMS hotspot localization. We found significant difference of locations between finger tapping fMRI activation and TMS hotspot. Specifically, the finger tapping fMRI activation was more lateral than the TMS hotspot in the premotor area. The fMRI activation peak and TMS hotspot were taken as seeds for resting-state functional connectivity analyses. Compared with TMS hotspot, finger tapping fMRI activation peak showed more intensive functional connectivity with, e.g., the bilateral premotor, insula, putamen, and right globus pallidus. The findings more intensive networks of finger tapping activation than TMS hotspot suggest that TMS treatment targeting on the fMRI activation area might result in more remote effects and would be more helpful for TMS treatment on movement disorders.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles J. Lynch ◽  
Benjamin M. Silver ◽  
Marc J. Dubin ◽  
Alex Martin ◽  
Henning U. Voss ◽  
...  

Abstract Resting state functional connectivity magnetic resonance imaging (fMRI) is a tool for investigating human brain organization. Here we identify, visually and algorithmically, two prevalent influences on fMRI signals during 440 h of resting state scans in 440 healthy young adults, both caused by deviations from normal breathing which we term deep breaths and bursts. The two respiratory patterns have distinct influences on fMRI signals and signal covariance, distinct timescales, distinct cardiovascular correlates, and distinct tendencies to manifest by sex. Deep breaths are not sex-biased. Bursts, which are serial taperings of respiratory depth typically spanning minutes at a time, are more common in males. Bursts share features of chemoreflex-driven clinical breathing patterns that also occur primarily in males, with notable neurological, psychiatric, medical, and lifespan associations. These results identify common breathing patterns in healthy young adults with distinct influences on functional connectivity and an ability to differentially influence resting state fMRI studies.


2020 ◽  
Vol 14 ◽  
Author(s):  
Benjamin M. Rosenberg ◽  
Eva Mennigen ◽  
Martin M. Monti ◽  
Roselinde H. Kaiser

Prior research has shown that during development, there is increased segregation between, and increased integration within, prototypical resting-state functional brain networks. Functional networks are typically defined by static functional connectivity over extended periods of rest. However, little is known about how time-varying properties of functional networks change with age. Likewise, a comparison of standard approaches to functional connectivity may provide a nuanced view of how network integration and segregation are reflected across the lifespan. Therefore, this exploratory study evaluated common approaches to static and dynamic functional network connectivity in a publicly available dataset of subjects ranging from 8 to 75 years of age. Analyses evaluated relationships between age and static resting-state functional connectivity, variability (standard deviation) of connectivity, and mean dwell time of functional network states defined by recurring patterns of whole-brain connectivity. Results showed that older age was associated with decreased static connectivity between nodes of different canonical networks, particularly between the visual system and nodes in other networks. Age was not significantly related to variability of connectivity. Mean dwell time of a network state reflecting high connectivity between visual regions decreased with age, but older age was also associated with increased mean dwell time of a network state reflecting high connectivity within and between canonical sensorimotor and visual networks. Results support a model of increased network segregation over the lifespan and also highlight potential pathways of top-down regulation among networks.


Sign in / Sign up

Export Citation Format

Share Document