Lumbar Intrafacet Bone Dowel Fixation

Neurosurgery ◽  
2015 ◽  
Vol 76 (4) ◽  
pp. 470-478 ◽  
Author(s):  
Daniel J. Cook ◽  
Matthew S. Yeager ◽  
Michael Y. Oh ◽  
Boyle C. Cheng

Abstract BACKGROUND: The efficacy of intrafacet bone dowels in promoting lumbar fusion has not been established. A recently published study indicates a low fusion rate, along with device migration. OBJECTIVE: To evaluate the mechanical stability of 2 lumbar facet fixation technologies before and after repeated cyclic loading. METHODS: Six human lumbar specimens were implanted with both types of allograft, one at L2-3 and the other at L4-5, on a randomized basis. All specimens were subjected to pure-moment flexibility testing before and after implantation and after 2500 and 5000 cycles of flexion-extension bending. Each specimen was scanned with computed tomography before and after cyclic loading to measure device migration. RESULTS: Only dowel 1 resulted in a statistically significant reduction in flexion-extension range of motion at the treatment level. This reduction was significant at baseline testing (P = .03) and after 2500 cycles of flexion-extension loading (P = .048) but was not significant after 5000 cycles of loading. One of the bone dowels extruded posteriorly out of the joint space during baseline axial torsion flexibility testing, which was before any cyclic loading. CONCLUSION: The data obtained in this study do not indicate efficacy of fixation for cylindrical bone dowels in the lumbar facet joint. Significant fixation was detected only for one of the devices and was no longer present after a relatively short duration of repeated loading. Furthermore, considerable magnitudes of device migration were detected.

Cartilage ◽  
2019 ◽  
pp. 194760351988500
Author(s):  
Lorenza Henao-Murillo ◽  
Maria-Ioana Pastrama ◽  
Keita Ito ◽  
Corrinus C. van Donkelaar

Objective The interaction between proteoglycan loss and collagen damage in articular cartilage and the effect of mechanical loading on this interaction remain unknown. The aim of this study was to answer the following questions: (1) Is proteoglycan loss dependent on the amount of collagen damage and does it depend on whether this collagen damage is superficial or internal? (2) Does repeated loading further increase the already enhanced proteoglycan loss in cartilage with collagen damage? Design Fifty-six bovine osteochondral plugs were equilibrated in phosphate-buffered saline for 24 hours, mechanically tested in compression for 8 hours, and kept in phosphate-buffered saline for another 48 hours. The mechanical tests included an overloading step to induce collagen damage, creep steps to determine tissue stiffness, and cyclic loading to induce convection. Proteoglycan release was measured before and after mechanical loading, as well as 48 hours post-loading. Collagen damage was scored histologically. Results Histology revealed different collagen damage grades after the application of mechanical overloading. After 48 hours in phosphate-buffered saline postloading, proteoglycan loss increased linearly with the amount of total collagen damage and was dependent on the presence but not the amount of internal collagen damage. In samples without collagen damage, repeated loading also resulted in increased proteoglycan loss. However, repeated loading did not further enhance the proteoglycan loss induced by damaged collagen. Conclusion Proteoglycan loss is enhanced by collagen damage and it depends on the presence of internal collagen damage. Cyclic loading stimulates proteoglycan loss in healthy cartilage but does not lead to additional loss in cartilage with damaged collagen.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Per Svedmark ◽  
Svante Berg ◽  
Marilyn E. Noz ◽  
Gerald Q. Maguire ◽  
Michael P. Zeleznik ◽  
...  

This study describes a 3D-CT method for analyzing facet joint motion and vertebral rotation in the lumbar spine after TDR. Ten patients were examined before and then three years after surgery, each time with two CT scans: provoked flexion and provoked extension. After 3D registration, the facet joint 3D translation and segmental vertebral 3D rotation were analyzed at the operated level (L5-S1) and adjacent level (L4-L5). Pain was evaluated using VAS. The median (±SD) 3D movement in the operated level for the left facet joint was 3.2 mm (±1.9 mm) before and 3.5 mm (±1.7 mm) after surgery and for the right facet joint was 3.0 mm (±1.0 mm) before and 3.6 mm (±1.4 mm) after surgery. The median vertebral rotation in the sagittal plane at the operated level was 5.4° (±2.3°) before surgery and 6.8° (±1.7°) after surgery and in the adjacent level was 7.7° (±4.0°) before and 9.2° (±2.7°) after surgery. The median VAS was reduced from 6 (range 5–8) to 3 (range 2–8) in extension and from 4 (range 2–6) to 2 (range 1–3) in flexion.


Author(s):  
Mohammad Zolghadr ◽  
Boyi Hu ◽  
Richard Vaglienti ◽  
Xiaopeng Ning

Lower Back Pain is one of the leading causes of disability globally. Its degradation to patients’ standing stability has been reported in the past. The goal of the current study was to evaluate the influence of immediate pain relief enabled by a lumbar facet joint anesthetic injection on patients’ standing stability. A total of 91 chronic LBP patients were recruited, each patient performed standing balance tests both before and after a lumbar facet nerve block treatment while their dynamic center of pressure data were recorded and compared. Results of our study showed that after the injection, participants showed 10% smaller total excursion and up to 30% smaller sway area. These results suggested patients’ balance might be used as an objective measurement to evaluate pain reduction among LBP patients.


Author(s):  
Mustafa Ozcamdalli ◽  
Abdulhamit Misir ◽  
Sinan Oguzkaya ◽  
Turan Bilge Kizkapan ◽  
Ozgur Ismail Turk ◽  
...  

BACKGROUND: Low back pain is a very common musculoskeletal complaint that impacts patients’ quality of life in numerous ways. Facet joint injection is a widely used spinal intervention to relieve back pain. Effects of facet joint injection on spinopelvic parameters and the relationship between injection levels and spinopelvic parameter changes have not been evaluated before. OBJECTIVE: To compare spinopelvic parameters before and after injections at different levels, and to evaluate the correlation between these changes and functional outcome. METHODS: 144 patients were included in the study and retrospectively grouped by injection level: Group 1 (n= 72), L4-L5 and L5-S1, and group 2 (n= 72), L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1. Pre- and post-injection Oswestry Disability Index (ODI), sacral slope, pelvic tilt, pelvic incidence, and intervertebral angles between T12 and S1 were compared. The correlation between ODI and radiographic parameter changes was evaluated. RESULTS: The pre- to post-injection ODI change was significantly lower in group 2 (p= 0.010). There was no significant difference between the groups in terms of pre- and post-injection spinopelvic parameters before and after injection (p> 0.05) except pelvic tilt (p= 0.001 and p= 0.007, respectively). There was a significant moderate positive correlation between the change in the ODI value and the change in pelvic tilt (P= 0.012, r= 0.581). CONCLUSIONS: Multilevel lumbar facet injections are clinically more effective than only two-level lower level lumbar injections. Pelvic tilt changes positively correlate with the ODI score changes.


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


2021 ◽  
Vol 9 (1) ◽  
pp. 232596712097753
Author(s):  
Brian J. Kelly ◽  
Alan W. Reynolds ◽  
Patrick J. Schimoler ◽  
Alexander Kharlamov ◽  
Mark Carl Miller ◽  
...  

Background: Lesions of the long head of the biceps can be successfully treated with biceps tenotomy or tenodesis when surgical management is elected. The advantage of a tenodesis is that it prevents the potential development of a cosmetic deformity or cramping muscle pain. Proponents of a subpectoral tenodesis believe that “groove pain” may remain a problem after suprapectoral tenodesis as a result of persistent motion of the tendon within the bicipital groove. Purpose/Hypothesis: To evaluate the motion of the biceps tendon within the bicipital groove before and after a suprapectoral intra-articular tenodesis. The hypothesis was that there would be minimal to no motion of the biceps tendon within the bicipital groove after tenodesis. Study Design: Controlled laboratory study. Methods: Six fresh-frozen cadaveric arms were dissected to expose the long head of the biceps tendon as well as the bicipital groove. Inclinometers and fiducials (optical markers) were used to measure the motions of the scapula, forearm, and biceps tendon through a full range of shoulder and elbow motions. A suprapectoral biceps tenodesis was then performed, and the motions were repeated. The motion of the biceps tendon was quantified as a function of scapular or forearm motion in each plane, both before and after the tenodesis. Results: There was minimal motion of the native biceps tendon during elbow flexion and extension but significant motion during all planes of scapular motion before tenodesis, with the most motion occurring during shoulder flexion-extension (20.73 ± 8.21 mm). The motion of the biceps tendon after tenodesis was significantly reduced during every plane of scapular motion compared with the native state ( P < .01 in all planes of motion), with a maximum motion of only 1.57 mm. Conclusion: There was a statistically significant reduction in motion of the biceps tendon in all planes of scapular motion after the intra-articular biceps tenodesis. The motion of the biceps tendon within the bicipital groove was essentially eliminated after the suprapectoral biceps tenodesis. Clinical Relevance: This arthroscopic suprapectoral tenodesis technique can significantly reduce motion of the biceps tendon within the groove in this cadaveric study, possibly reducing the likelihood of groove pain in the clinical setting.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, there is no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foraminoplasty. Methods Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization; 500 N preload was imposed on the L4 superior endplate, and 10 N⋅m was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of the L4-L5 spine were recorded. Results The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 2/5 from the apex to the base. The disc stress of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 1/5 from the apex to the base. Conclusion In this study, the ROM and disc stress of L4/L5 were affected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from the ventral to the dorsal should be less than 3/5 of the S1 upper facet joint. It is not recommended to form from apex to base. Level of evidence Level IV


2021 ◽  
pp. 219256822110060
Author(s):  
Jun-Xin Chen ◽  
Yun-He Li ◽  
Jian Wen ◽  
Zhen Li ◽  
Bin-Sheng Yu ◽  
...  

Study Design: A biomechanical study. Objectives: The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. Methods: Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen’s annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. Results: Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens ( P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision ( P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. Conclusions: The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.


1998 ◽  
Vol 11 (5) ◽  
pp. 452???453 ◽  
Author(s):  
Atsushi Fujiwara ◽  
Kazuya Tamai ◽  
Minoru Yamato ◽  
Hiroyuki Yoshida ◽  
Koichi Saotome

Sign in / Sign up

Export Citation Format

Share Document