Comment on Ion Acoustic Shocks in a Collisionless Plasma with Negative Ions

1999 ◽  
Vol T82 (1) ◽  
pp. 104
Author(s):  
Yoshiharu Nakamura ◽  
Padma K. Shukla
2020 ◽  
Vol 10 (17) ◽  
pp. 6115 ◽  
Author(s):  
Md. Golam Hafez ◽  
Parvin Akter ◽  
Samsul Ariffin Abdul Karim

In this work, the effects of plasma parameters on overtaking collisions of ion acoustic multi-shocks are studied in an unmagnetized collisionless plasma with positive and negative ions, and (α,q)-distributed electrons. To investigate such phenomena, the reductive perturbation technique is implemented to derive the Burgers equation. The N-shock wave solution is determined for this equation by directly implementing the exponential function. The result reveals that both the amplitudes and thicknesses of overtaking collisions of N-shock wave compressive and rarefactive electrostatic potential are significantly modified with the influences of viscosity coefficients of positive and negative ions. In addition, the density ratios also play an essential role to the formation of overtaking collisions of N-shocks. It is observed from all theoretical and parametric investigations that the outcomes may be very useful in understanding the dynamical behavior of overtaking collisions of multi-shocks in various environments, especially the D- and F-regions of the Earth’s ionosphere and the future experimental investigations in Q-machine laboratory plasmas.


1986 ◽  
Vol 36 (2) ◽  
pp. 301-312 ◽  
Author(s):  
S. G. Tagare

Ion-acoustic solitons in a collisionless plasma with adiabatic positive and negative ions with equal ion temperature and isothermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced for the fast ion-acoustic wave to the Korteweg–de Vries and modified Korteweg–de Vries equation and for the slow ion-acoustic wave to the Korteweg–de Vries equation. Stationary solutions of these equations are obtained and the effect of ion temperature on fast and slow ion-acoustic solitons is investigated.


1998 ◽  
Vol 80 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Takami Takeuchi ◽  
Satoru Iizuka ◽  
Noriyoshi Sato

2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2016 ◽  
Vol 23 (2) ◽  
pp. 022107 ◽  
Author(s):  
Pallabi Pathak ◽  
S. K. Sharma ◽  
Y. Nakamura ◽  
H. Bailung

1989 ◽  
Vol 12 (4) ◽  
pp. 749-772 ◽  
Author(s):  
A. K. Sur ◽  
G. C. Das ◽  
B. Chakraborty ◽  
S. N. Paul ◽  
L. Debnath

A study is made of the propagation of ion-acoustic whistlers in the atmosphere including the effects of negative ions. The dispersion relation, phase and group velocities of whistlers are discussed. It is shown that the presence of negative ions introduces a critical frequency which, for equal ionic masses, is equal to the ion-cyclotron frequency. Special attention is given to the group travel time of whistlers at mid-latitude and equator so that the role of negative ions on the group travel time can be determined. The cyclotron damping of whistlers in the presence of negative ions has been studied. The velocity distribution, total attenuation and the induced magnetic field are calculated from the temporal as well as spatial cyclotron damping. It is suggested that the attenuation of whistlers may cause heating of the ionosphere. It is also indicated that the measurement of the group travel time from its source to the observer at the satellite would help to diagnose the ionospheric parameters. The results of the analysis are presented by several graphical presentations.


1988 ◽  
Vol 39 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Frank Verheest

Ion-acoustic solitons in a plasma with different adiabatic ion constituents and isothermal electrons are studied via a reductive perturbation method. The basic fluid equations then give rise to KdV or modified KdV equations, depending upon the relative ion densities. At critical densities, rarefactive and compressive fast ion-acoustic solitons are possible. Explicit stationary solutions are discussed in the special case of cold ions, in a plasma containing two species of negative ions and one of positive ions. The inclusion of heavier ions, even at low densities, increases the amplitudes of the critical solitons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pallabi Pathak

The effect of enhanced Landau damping on the evolution of ion acoustic Peregrine soliton in multicomponent plasma with negative ions has been investigated. The experiment is performed in a multidipole double plasma device. To enhance the ion Landau damping, the temperature of the ions is increased by applying a continuous sinusoidal signal of frequency close to the ion plasma frequency ∼1 MHz to the separation grid. The spatial damping rate of the ion acoustic wave is measured by interferometry. The damping rate of ion acoustic wave increases with the increase in voltage of the applied signal. At a higher damping rate, the Peregrine soliton ceases to show its characteristics leaving behind a continuous envelope.


1992 ◽  
Vol 48 (2) ◽  
pp. 229-236 ◽  
Author(s):  
H. Yamada ◽  
Z. Yoshida

Sheath potential distributions in electrostatic plasmas including negative ions have been studied using the Bohm equation. Since the mean velocity of the negative ions is not necessarily negligible compared with their thermal velocity, the contribution from non-thermal negative ions has been considered. The Sagdeev potential has been introduced to consider structural instabilities of the Bohm system. Wavy solutions related to ion-acoustic solitons bifurcate from the monotone asymptotic Bohm sheath solutions. The solvability conditions have also been discussed for characteristic parameter such as the concentration of negative ions and the Mach numbers of positive and negative ions.


2000 ◽  
Vol 63 (4) ◽  
pp. 343-353 ◽  
Author(s):  
S. K. EL-LABANY ◽  
S. A. EL-WARRAKI ◽  
W. M. MOSLEM

Cylindrical ion-acoustic solitons are investigated in a warm plasma with negative ions and multiple-temperature electrons through the derivation of a cylindrical Korteweg–de Vries equation using a reductive perturbation theory. The results are compared with those for the corresponding planar solitons.


Sign in / Sign up

Export Citation Format

Share Document