Global Solar Radiation Distribution and Available Solar Energy Potential in Tanzania

2001 ◽  
Vol T97 (1) ◽  
pp. 91 ◽  
Author(s):  
R. Alfayo ◽  
C. B. S. Uiso
2017 ◽  
Vol 3 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Bed Raj KC ◽  
Shekhar Gurung

The global solar radiation (GSR) is measured at the horizontal surface since 2011 using calibrated CMP6 Pyranometer at Nepalgunj which is located at an altitude 150m above sea level. This paper explains the daily, monthly and seasonal variation of global solar radiation and also compares temperature with global solar radiation. The average temperature in Nepalgunj varies between 44°C (it is hottest from May through July) and 30°C, although during winter (November-January) it can reach 4°C. The annual average daily global solar radiation is about 12.9MJ/m2/day which is sufficient to promote active and passive solar energy technology in Nepalgunj and other similar geographical locations.


2007 ◽  
Vol 11 (4) ◽  
pp. 125-134 ◽  
Author(s):  
Snezana Dragicevic ◽  
Nikola Vuckovic

Serbia is becoming more dependent on imported primary energy to meet its increasing energy demand. The ratio of indigenous primary energy production to primary energy consumption is decreasing. Therefore, it is of great importance for Serbia to make use of its indigenous energy resources more effectively, including its solar energy potential. Knowledge of global solar radiation is essential in the prediction, study, and design of the economic viability of systems which use solar energy. In this paper, the solar radiation data on Cacak (lat 43.87?N, long 20.33?E) are analyzed based on 4 years of global solar radiation data measured on a horizontal surface. The distributional solar radiation parameters are derived from the available data and analyzed. The available solar radiation data on a horizontal surface are converted to that of various tilt angles and the yearly and monthly optimum tilt angles are determined.


In this paper, a study was carried out on solar energy potential in Sapele, Nigeria. Five photovoltaic solar panel (cell) connected in series where used to generate data on maximum and minimum temperature readings, voltage and current readings for a period of 50 days. The result obtained shown that a mean average temperature readings of 30.01 °C, mean average voltage readings of 14.23 V and mean average current reading of 4.206 A were obtained. The global solar radiation and extraterrestrial solar radiation were calculated as 11.09 kwh/m2 /day and 5.31kwh/m2 /day respectively. Considering the average power deposited (0.060 kW and 0.180 kWh) daily, enough energy can be obtained from solar power system and this can help to solve part of Nigeria energy crisis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


2019 ◽  
Vol 44 (2) ◽  
pp. 168-188
Author(s):  
Shaban G Gouda ◽  
Zakia Hussein ◽  
Shuai Luo ◽  
Qiaoxia Yuan

Utilizing solar energy requires accurate information about global solar radiation (GSR), which is critical for designers and manufacturers of solar energy systems and equipment. This study aims to examine the literature gaps by evaluating recent predictive models and categorizing them into various groups depending on the input parameters, and comprehensively collect the methods for classifying China into solar zones. The selected groups of models include those that use sunshine duration, temperature, dew-point temperature, precipitation, fog, cloud cover, day of the year, and different meteorological parameters (complex models). 220 empirical models are analyzed for estimating the GSR on a horizontal surface in China. Additionally, the most accurate models from the literature are summarized for 115 locations in China and are distributed into the above categories with the corresponding solar zone; the ideal models from each category and each solar zone are identified. Comments on two important temperature-based models that are presented in this work can help the researchers and readers to be unconfused when reading the literature of these models and cite them in a correct method in future studies. Machine learning techniques exhibit performance GSR estimation better than empirical models; however, the computational cost and complexity should be considered at choosing and applying these techniques. The models and model categories in this study, according to the key input parameters at the corresponding location and solar zone, are helpful to researchers as well as to designers and engineers of solar energy systems and equipment.


Author(s):  
Abdul Basit Da’ie

Solar energy properties such as Global Solar Radiation (GSR) intensity could be determined in either methods, experimentally or theoretically. Unfortunately, in most countries including Afghanistan, the first method which is more acceptable, but due to the high cost, maintenance and calibration requirements is not available. Therefore, an alternative widely used way is the second one which is model developments based on the meteorological (atmospheric) data; specially the sunny hours. The aim of this study at Shakardara area is to estimate atmospheric transparency percentage on 2017, determining the angstrom model coefficients and to introduce a suitable model for global solar radiation prediction. The hourly observed solar radiation intensity H (WHm-2 ) and sunshine hours S (


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Haixiang Zang ◽  
Qingshan Xu ◽  
Pengwei Du ◽  
Katsuhiro Ichiyanagi

A modified typical meteorological year (TMY) method is proposed for generating TMY from practical measured weather data. A total of eleven weather indices and novel assigned weighting factors are applied in the processing of forming the TMY database. TMYs of 35 cities in China are generated based on the latest and accurate measured weather data (dry bulb temperature, relative humidity, wind velocity, atmospheric pressure, and daily global solar radiation) in the period of 1994–2010. The TMY data and typical solar radiation data are also investigated and analyzed in this paper, which are important in the utilizations of solar energy systems.


2019 ◽  
Vol 11 (9) ◽  
pp. 1130 ◽  
Author(s):  
Shuang Xia ◽  
Alberto M. Mestas-Nuñez ◽  
Hongjie Xie ◽  
Rolando Vega

Global horizontal irradiance (i.e., shortwave downward solar radiation received by a horizontal surface on the ground) is an important geophysical variable for climate and energy research. Since solar radiation is attenuated by clouds, its variability is intimately associated with the variability of cloud properties. The spatial distribution of clouds and the daily, monthly, seasonal, and annual solar energy potential (i.e., the solar energy available to be converted into electricity) derived from satellite estimates of global horizontal irradiance are explored over the state of Texas, USA and surrounding regions, including northern Mexico and the western Gulf of Mexico. The maximum (minimum) monthly solar energy potential in the study area is 151–247 kWhm−2 (43–145 kWhm−2) in July (December). The maximum (minimum) seasonal solar energy potential is 457–706 kWhm−2 (167–481 kWhm−2) in summer (winter). The available annual solar energy in 2015 was 1295–2324 kWhm−2. The solar energy potential is significantly higher over the Gulf of Mexico than over land despite the ocean waters having typically more cloudy skies. Cirrus is the dominant cloud type over the Gulf which attenuates less solar irradiance compared to other cloud types. As expected from our previous work, there is good agreement between satellite and ground estimates of solar energy potential in San Antonio, Texas, and we assume this agreement applies to the surrounding larger region discussed in this paper. The study underscores the relevance of geostationary satellites for cloud/solar energy mapping and provides useful estimates on solar energy in Texas and surrounding regions that could potentially be harnessed and incorporated into the electrical grid.


Sign in / Sign up

Export Citation Format

Share Document