scholarly journals A default mechanism of spindle orientation based on cell shape is sufficient to generate cell fate diversity in polarised Xenopus blastomeres

Development ◽  
2006 ◽  
Vol 133 (19) ◽  
pp. 3883-3893 ◽  
Author(s):  
B. Strauss
2019 ◽  
Vol 30 (19) ◽  
pp. 2458-2468 ◽  
Author(s):  
Jingchen Li ◽  
Longcan Cheng ◽  
Hongyuan Jiang

Cell division orientation plays an essential role in tissue morphogenesis and cell fate decision. Recent studies showed that either cell shape or adhesion geometry can regulate the orientation of mitotic spindles and thereby the cell division orientation. However, how they together regulate the spindle orientation remains largely unclear. In this work, we use a general computational model to investigate the competitive mechanism of determining the spindle orientation between cell shape and intercellular adhesion in epithelial cells. We find the spindle orientation is dominated by the intercellular adhesion when the cell shape anisotropy is small, but dominated by the cell shape when the shape anisotropy is large. A strong adhesion and moderate adhesive size can ensure the planar division of epithelial cells with large apico-basal elongation. We also find the spindle orientation could be perpendicular to the adhesive region when only one side of the cell is adhered to an E-cadherin–coated matrix. But after the cell is compressed, the spindle orientation is governed by the cell shape and the spindle will be parallel to the adhesive region when the cell shape anisotropy is large. Finally, we demonstrate the competition between cell shape and tricellular junctions can also effectively regulate the spindle orientation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lindsey Seldin ◽  
Andrew Muroyama ◽  
Terry Lechler

Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures.


2018 ◽  
Author(s):  
Shori Nishimoto ◽  
Yuta Tokuoka ◽  
Takahiro G Yamada ◽  
Noriko F Hiroi ◽  
Akira Funahashi

SummaryImage-based deep learning systems, such as convolutional neural networks (CNNs), have recently been applied to cell classification, producing impressive results; however, application of CNNs has been confined to classification of the current cell state from the image. Here, we focused on cell movement where current and/or past cell shape can influence the future cell fate. We demonstrate that CNNs prospectively predicted the future direction of cell movement with high accuracy from a single image patch of a cell at a certain time. Furthermore, by visualizing the image features that were learned by the CNNs, we could identify morphological features, e.g., the protrusions and trailing edge that have been experimentally reported to determine the direction of cell movement. Our results indicate that CNNs have the potential to predict the future cell fate from current cell shape, and can be used to automatically identify those morphological features that influence future cell fate.


2011 ◽  
Vol 195 (4) ◽  
pp. 553-562 ◽  
Author(s):  
Ana Carmena ◽  
Aljona Makarova ◽  
Stephan Speicher

A crucial first step in asymmetric cell division is to establish an axis of cell polarity along which the mitotic spindle aligns. Drosophila melanogaster neural stem cells, called neuroblasts (NBs), divide asymmetrically through intrinsic polarity cues, which regulate spindle orientation and cortical polarity. In this paper, we show that the Ras-like small guanosine triphosphatase Rap1 signals through the Ral guanine nucleotide exchange factor Rgl and the PDZ protein Canoe (Cno; AF-6/Afadin in vertebrates) to modulate the NB division axis and its apicobasal cortical polarity. Rap1 is slightly enriched at the apical pole of metaphase/anaphase NBs and was found in a complex with atypical protein kinase C and Par6 in vivo. Loss of function and gain of function of Rap1, Rgl, and Ral proteins disrupt the mitotic axis orientation, the localization of Cno and Mushroom body defect, and the localization of cell fate determinants. We propose that the Rap1–Rgl–Ral signaling network is a novel mechanism that cooperates with other intrinsic polarity cues to modulate asymmetric NB division.


2018 ◽  
Vol 46 (3) ◽  
pp. 873-889 ◽  
Author(s):  
Silvia Armelloni ◽  
Masami Ikehata ◽  
Deborah Mattinzoli ◽  
Min Li ◽  
Carlo Maria Alfieri ◽  
...  

Background/Aims The research of genes implicated in kidney glomerular function, eliciting cell fate program, is always at the forefront in nephrological studies. Several neurological molecules have been recently the object of study not only for their involvement in the central nervous system differentiation but also for their importance in the functionality of other organs and for mature phenotype, as in kidney. NeuroD, in CNS, is related to two functional roles, the early survival and the differentiation. The aim of our study was to ascertain the presence of NeuroD transcription factor in glomeruli and to understand which targets and mechanisms NeuroD controls. Methods: We used immunofluorescence (IF) studies on both human and mice renal tissues and on cultured podocytes to describe NeuroD distribution; then we investigated NeuroD binding to the nephrin promoter region in cultured podocytes by chromatin-immuno-precipitation (ChIP) assay. The overexpression of NeuroD in podocytes was used to establish first its role in nephrin synthesis, evaluated by real-time quantitative (RTq) PCR and western-blot (WB) and successively to determine the recovery of cell morphology after adriamycin injury, measuring foot processes length. Results: We identified NeuroD transcription factor in glomeruli, in the same cells positive for WT1 and synaptopodin, namely podocytes; subsequently we observed a differentiation dependent NeuroD distribution in cultured podocytes, and a consistent link of NeuroD with the Nephrin promoter leading to the regulation of Nephrin translation and transcription. Our data also describes NeuroD expression in cytoplasm as phosphoprotein linked to nephrin and actinin4. Preliminary experiments seem to indicate NeuroD involved in dynamics of cell shape regulation after adriamycin injury. Conclusion: we propose that NeuroD possess in podocytes a dual ability acting in the nucleus as a transcription factor and in cytoplasm stabilizing cell shape.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Cuie Chen ◽  
Ryan Cummings ◽  
Aghapi Mordovanakis ◽  
Alan J Hunt ◽  
Michael Mayer ◽  
...  

Asymmetric stem cell division is a critical mechanism for balancing self-renewal and differentiation. Adult stem cells often orient their mitotic spindle to place one daughter inside the niche and the other outside of it to achieve asymmetric division. It remains unknown whether and how the niche may direct division orientation. Here we discover a novel and evolutionary conserved mechanism that couples cell polarity to cell fate. We show that the cytokine receptor homolog Dome, acting downstream of the niche-derived ligand Upd, directly binds to the microtubule-binding protein Eb1 to regulate spindle orientation in Drosophila male germline stem cells (GSCs). Dome’s role in spindle orientation is entirely separable from its known function in self-renewal mediated by the JAK-STAT pathway. We propose that integration of two functions (cell polarity and fate) in a single receptor is a key mechanism to ensure an asymmetric outcome following cell division.


2019 ◽  
Vol 218 (4) ◽  
pp. 1200-1217 ◽  
Author(s):  
Maribel Franco ◽  
Ana Carmena

Mitotic spindle orientation must be tightly regulated during development and adult tissue homeostasis. It determines cell-fate specification and tissue architecture during asymmetric and symmetric cell division, respectively. Here, we uncover a novel role for Ephrin–Eph intercellular signaling in controlling mitotic spindle alignment in Drosophila optic lobe neuroepithelial cells through aPKC activity–dependent myosin II regulation. We show that conserved core components of the mitotic spindle orientation machinery, including Discs Large1, Mud/NuMA, and Canoe/Afadin, mislocalize in dividing Eph mutant neuroepithelial cells and produce spindle alignment defects in these cells when they are down-regulated. In addition, the loss of Eph leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Hence, Eph signaling is a novel extrinsic mechanism that regulates both spindle orientation and cell proliferation in the Drosophila optic lobe neuroepithelium. Similar mechanisms could operate in other Drosophila and vertebrate epithelia.


2015 ◽  
Vol 26 (7) ◽  
pp. 1286-1295 ◽  
Author(s):  
Francisco Lázaro-Diéguez ◽  
Iaroslav Ispolatov ◽  
Anne Müsch

All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.


Sign in / Sign up

Export Citation Format

Share Document