Sex determination in mice: Y and chromosome 17 interactions

Development ◽  
1987 ◽  
Vol 101 (Supplement) ◽  
pp. 25-32
Author(s):  
Robert P. Erickson ◽  
Edward J. Durbin ◽  
Laura L. Tres

Mice provide material for studies of Y-chromosomal and autosomal sequences involved in sex determination. Eicher and coworkers have identified four subregions in the mouse Y chromosome, one of which corresponds to the Sxr fragment. This fragment demonstrates that only a small portion of the Y is necessary for male sex determination. The mouse Y chromosome also shows variants: the BALB/cWt Y chromosome, which causes nondisjunction of the Y in some germ cells leading to XO and XYY cells and resulting in many infertile true hermaphrodites; the YDom, a wild-type chromosome which can result in sex reversal on a C57BL/6J background; and Y-chromosomal variants detected with Y-derived genomic DNA clones among inbred strains. Two different autosomal loci affecting sex differentiation have been identified in the mouse by Eicher and coworkers. The first of these has not been mapped to a particular chromosome and has been designated Tda-1 (Testis-determining autosomal-1). This is the locus in C57BL/6J mice at which animals must be homozygous in order to develop as true hermaphrodites or sex-reversed animals in the presence of YDom. The other locus has been identified on proximal chromosome 17. This locus also caused hermaphrodites on the C57BL/6J background and it is most easily interpreted as a locus deleted in 7hp. It is located in a region on chromosome 17 containing other genes or DNA sequences that may be related to sex determination. These include both the Hye (histocompatibility Y expression) locus that affects the amount of male-specific antigen detected by serological and cell-mediated assays and a concentration of Bkm sequences. Despite the Y and chromosomal 17 localizations of Bkm sequences, there is no evidence that transcripts from these are involved in sex determination: RNA hybridizing to sense and anti-sense Bkm clones can be detected in day-14 fetal gonads of both sexes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mateus C. Adolfi ◽  
Kang Du ◽  
Susanne Kneitz ◽  
Cédric Cabau ◽  
Margot Zahm ◽  
...  

AbstractArapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGFβ signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.


Using a combination of in situ mapping and DNA analysis with recombinant DNA probes specific for the Sxr region of the mouse Y chromosome, we show that both the gene(s) controlling primary sex determination and the expression of the male-specific antigen H-Y ( Tdy and Hya respectively) are located on the minute short arm of the mouse Y chromosome. We demonstrate that the H-Y - variant of Sxr (Sxr') arose by a partial deletion within the Sxr region and propose an alternative model for the generation of the original Sxr region.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Abyt Ibraimov

In many animals, including us, the genetic sex is determined at fertilization by sex chromosomes. Seemingly, the sex determination (SD) in human and animals is determined by the amount of constitutive heterochromatin on Y chromosome via cell thermoregulation. It is assumed the medulla and cortex tissue cells in the undifferentiated embryonic gonads (UEG) differ in vulnerability to the increase of the intracellular temperature. If the amount of the Y chromosome constitutive heterochromatin is enough for efficient elimination of heat difference between the nucleus and cytoplasm in rapidly growing UEG cells the medulla tissue survives. Otherwise it doomed to degeneration and a cortex tissue will remain in the UEG. Regardless of whether our assumption is true or not, it remains an open question why on Y chromosome there is a large constitutive heterochromatin block? What is its biological meaning? Does it relate to sex determination, sex differentiation and development of secondary sexual characteristics? If so, what is its mechanism: chemical or physical? There is no scientifically sound answer to these questions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andreja Čerenak ◽  
Zala Kolenc ◽  
Petra Sehur ◽  
Simon P. Whittock ◽  
Anthony Koutoulis ◽  
...  

Abstract Male specific DNA sequences were selected from a Diversity Arrays Technology (DArT) mapping study to evaluate their suitability for determination of the sex phenotype among young seedlings in a hop (Humulus lupulus L.) breeding program. Ten male specific DArT markers showed complete linkage with male sex phenotype in three crossing families. Following optimization, four were successfully converted into PCR markers and a multiplex PCR approach for their use was developed. Among 197 plants (97 from the world collection; 100 from three segregating families), 94–100% positive correlation with sex phenotypic data was achieved for the single PCR amplification, whereas the multiplex approach showed 100% correlation. To develop a fast and low-cost method, crude sample multiplex PCR was evaluated in 253 progenies from 14 segregating populations without losing accuracy. The study describes, for the first time, the routine application of molecular markers linked to male sex in an intensive Slovenian hop breeding program. The methods described could be employed for screening of sex at the seedling stage in other hop programs worldwide, thereby saving resources for desirable female plants.


Genome ◽  
1997 ◽  
Vol 40 (3) ◽  
pp. 357-361 ◽  
Author(s):  
Andreas Polley ◽  
Martin W. Ganal ◽  
Elisabeth Seigner

The rapid identification of sex in the dioecious hop (Humulus lupulus) is important for the breeding of this cultivated plant because only unfertilized flowers of the female plants are used as an ingredient in the production of beer. It is thought that a sex-chromosome mechanism controls the development of male or female plants. We have compared pools of male and female plants derived from a hop cross to identify molecular markers associated with the Y or male-specific chromosome. Of 900 functional RAPD primers, 32 revealed fragments specific for male plants that were absent in female plants of this cross. Subsequently, the 32 positive primers were tested on unrelated male and female plants. Three of these 32 primers were specific for the Y chromosome in all lines. The Y-specific product derived from one of these primers (OPJ9) was of low copy in hybridization experiments and predominantly present in male plants. Primers developed from the DNA sequence of this product provide a marker for rapid sex identification in crosses of hop by means of PCR.Key words: chromosomes, RAPD, sex-specific DNA sequences, plant breeding, Y chromosome.


1956 ◽  
Vol 34 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Áskell Löve ◽  
Nina Sarkar

The western North American dioecious species Rumex paucifolius is shown to be a tetraploid with 2n = 28 chromosomes. It is the third tetraploid known within the subgenus Acetosa, and the first polyploid dioecious taxon of that group, the others having either 2n = 14 ♂, 15 ♀ (R. Acetosa and relatives), or 2n = 8 ♂, 9 ♀ (R. hastatulus). The sex chromosomes of R. paucifolius are of the XX:XY type, the male sex being heterogametic. The X is a large chromosome, while the Y is the smallest chromosome of the complement. The mechanism of sex determination of R. paucifolius follows the Melandrium–Acetosella scheme with strongly epistatic male determinants in the Y–chromosome. Other dioecious Acetosae follow the Drosophila–Acetosa scheme of sex determination with a balance between the number of X and autosome complements, the Y being sexually inert. It is concluded from the observed cytogenetical and morphological differences that R. paucifolius should constitute a section of its own, Paucifoliae, which should be placed as far as possible from the section Acetosa, though within the same subgenus. The other American dioecious endemic, R. hastatulus, is placed in a subsection of the section Acetosa.


2020 ◽  
Author(s):  
Xinxin Wang ◽  
Xin Ma ◽  
Gaobo Wei ◽  
Weirui Ma ◽  
Zhen Zhang ◽  
...  

AbstractIt is a mystery about sex determination and sexual plasticity in species without sex chromosomes. DNA methylation is a prevalent epigenetic modification in vertebrates, which has been shown to involve in the regulation of gene expression and embryo development. However, it remains unclear about how DNA methylation regulates sexual development. To elucidate it, we used zebrafish to investigate DNA methylation reprogramming during juvenile germ cell development and adult female-to-male sex transition. We revealed that primordial germ cells (PGCs) undergo significant DNA methylation reprogramming during germline development and set to an oocyte/ovary-like pattern at 9 days post fertilization (9 dpf). When blocking DNMTs activity in juveniles after 9 dpf, the zebrafish preferably develops into females. We also show that Tet3 involves in PGC development. Notably, we find that DNA methylome reprogramming during adult zebrafish sex transition is similar to the reprogramming during the sex differentiation from 9 dpf PGCs to sperm. Furthermore, inhibiting DNMTs activity can prevent the female-to-male sex transition, suggesting that methylation reprogramming is required for zebrafish sex transition. In summary, DNA methylation plays important roles in zebrafish germline development and sexual plasticity.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1010
Author(s):  
Susana A. Teixeira ◽  
Adriana M. G. Ibelli ◽  
Maurício E. Cantão ◽  
Haniel C. de Oliveira ◽  
Mônica C. Ledur ◽  
...  

Sexual dimorphism is a relevant factor in animal science, since it can affect the gene expression of economically important traits. Eventually, the interest in the prenatal phase in a transcriptome study may not comprise the period of development in which male and female conceptuses are phenotypically divergent. Therefore, it would be interesting if sex differentiation could be performed using transcriptome data, with no need for extra techniques. In this study, the sex of pig conceptuses (embryos at 25 days-old and fetuses at 35 days-old) was determined by reads counts per million (CPM) of Y chromosome-linked genes that were discrepant among samples. Thus, ten genes were used: DDX3Y, KDM5D, ZFY, EIF2S3Y, EIF1AY, LOC110255320, LOC110257894, LOC396706, LOC100625207, and LOC110255257. Conceptuses that presented reads CPM sum for these genes (ΣCPMchrY) greater than 400 were classified as males and those with ΣCPMchrY below 2 were classified as females. It was demonstrated that the sex identification can be performed at early stages of pig development from RNA-sequencing analysis of genes mapped on Y chromosome. Additionally, these results reinforce that sex determination is a mechanism conserved across mammals, highlighting the importance of using pigs as an animal model to study sex determination during human prenatal development.


The primary development of a male rather than a female gonad in mammals is determined by the presence of a Y chromosome. The other property unique to the Y chromosome is the occurrence of a cell-surface antigen (designated H-Y) which distinguishes male from female. Thus it was determined that male grafts were rejected by otherwise histocompatible females of the same inbred strain and later that H-Y-specific cytolytic T cells were produced by these grafted mice. When it was determined that females grafted with male skin produced antibody defining a serologically detectable male antigen (which may or may not be the same as H-Y), further immunogenetic analysis of this antigenic system became possible in terms of humoral and cellular factors. By using this assay it was demonstrated that the antigen was phylogenetically conserved and that it was expressed in the male mouse embryo as early as the 8-cell stage of development. The notion that H-Y was a single molecular species responsible for triggering the indifferent gonad to differentiate into the testis became a widely accepted hypothesis. In this report the H-Y antigenic system is traced historically from its original description to the role played in testis development. Data are presented which suggest that although H-Y is a male-specific factor and may play a role in male sex determination, it is unlikely that it is the primary inducer of testis differentiation.


Sign in / Sign up

Export Citation Format

Share Document