Sex determination in the germ line of Drosophila depends on genetic signals and inductive somatic factors

Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 505-518 ◽  
Author(s):  
R. Nothiger ◽  
M. Jonglez ◽  
M. Leuthold ◽  
P. Meier-Gerschwiler ◽  
T. Weber

We have analyzed the mechanism of sex determination in the germ line of Drosophila by manipulating three parameters: (1) the ratio of X-chromosomes to sets of autosomes (X:A); (2) the state of activity of the gene Sex-lethal (Sxl), and (3) the sex of the gonadal soma. To this end, animals with a ratio of 2X:2A and 2X:3A were sexually transformed into pseudomales by mutations at the sex-determining genes Sxl (Sex-lethal), tra (transformer), tra-2 (transformer-2), or dsx (double-sex). Animals with the karyotype 2X;3A were also transformed into pseudofemales by the constitutive mutation SxlM1. The sexual phenotype of the gonads and of the germ cells was assessed by phase-contrast microscopy. Confirming the conclusions of Steinmann-Zwicky et al. (Cell 57, 157, 1989), we found that all three parameters affect sex determination in germ cells. In contrast to the soma in which sex determination is completely cell-autonomous, sex determination in the germ line has a non-autonomous component inasmuch as the sex of the soma can influence the sexual pathway of the germ cells. Somatic induction has a clear effect on 2X;2A germ cells that carry a Sxl+ allele. These cells, which form eggs in an ovary, can enter spermatogenesis in testes. Mutations that cause partial loss of function or gain of function of Sxl thwart somatic induction and, independently of the sex of the soma, dictate spermatogenesis or oogenesis, respectively. Somatic induction has a much weaker effect on 2X;3A germ cells. This ratio is essentially a male signal for germ cells which consistently enter spermatogenesis in testes, even when they carry SxlM1. In a female soma, however, SxlM1 enables the 2X;3A germ cells to form almost normal eggs. Our results show that sex determination in the germ line is more complex than in the soma. They provide further evidence that the state of Sxl, the key gene for sex determination and dosage compensation in the soma, also determines the sex of the germ cells, and that, in the germ line, the state of activity of Sxl is regulated not only by the X:A ratio, but also by somatic inductive stimuli.

Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 535-550 ◽  
Author(s):  
B Oliver ◽  
D Pauli ◽  
A P Mahowald

Abstract Zygotically contributed ovo gene product is required for the survival of female germ cells in Drosophila melanogaster. Trans-allelic combinations of weak and dominant ovo mutations (ovoD) result in viable germ cells that appear to be partially transformed from female to male sexual identity. The ovoD2 mutation is partially suppressed by many Sex-lethal alleles that affect the soma, while those that affect only the germ line fail to interact with ovoD2. One of two loss-of-function ovo alleles is suppressed by a loss-of-function Sex-lethal allele. Because ovo mutations are germ line dependent, it is likely that ovo is suppressed by way of communication between the somatic and germ lines. A loss-of-function allele of ovo is epistatic to germ line dependent mutations in Sex-lethal. The germ line dependent sex determination mutation, sans fille, and ovoD mutations show a dominant synergistic interaction resulting in partial transformation of germ line sexual identity. The ovo locus appears to be involved in germ line sex determination and is linked in some manner to sex determination in the soma.


1992 ◽  
Vol 59 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Miguel Torres ◽  
Lucas Sanchez

SummaryIn Drosophila, sex is determined by the relative number of X chromosomes to autosomal sets (X: A ratio). The amount of products from several X-linked genes, called sisterless elements, is used to indicate to Sex-lethal the relative number of X chromosomes present in the cell. In response to the X: A signal, Sex-lethal is activated in females but remains inactive in males, being responsible for the control of both sex determination and dosage compensation. Here we find that the X-linked segmentation gene runt plays a role in this process. Reduced function of runt results in femalespecific lethality and sexual transformation of XX animals that are heterozygous for Sxl or sis loss-of-function mutations. These interactions are suppressed by SxlMI, a mutation that constitutively expresses female Sex-lethal functions, and occur at the time when the X: A signal determines Sex-lethal activity. Moreover, the presence of a loss-of-function runt mutation masculinizes triploid intersexes. On the other hand, runt duplications cause a reduction in male viability by ectopic activation of Sex-lethal. We conclude that runt is needed for the initial step of Sex-lethal activation, but does not have a major role as an X-counting element.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 763-767 ◽  
Author(s):  
M. Steinmann-Zwicky

In soma and germ cells of Drosophila, the X:A ratio builds a primary signal for sex determination, and in both tissues Sex-lethal (Sxl) function is required for cells to enter the female pathway. In somatic cells of XX animals, the products of X-chromosomal elements of the X:A ratio activate Sxl. Here I show that sisterless-b (sis-b), which is the X-chromosomal element of the somatic X:A ratio that has best been analysed, is not required for oogenesis. I also present evidence that Sxl function might not be sufficient to direct germ cells into the female pathway. These results show that the elements forming the X:A ratio in the germ line are different from the elements forming the X:A ratio in the soma and they suggest that, in the germ line, Sxl might not be regulated by the X:A ratio.


Genetics ◽  
1988 ◽  
Vol 120 (1) ◽  
pp. 159-171
Author(s):  
B Oliver ◽  
N Perrimon ◽  
A P Mahowald

Abstract Females homozygous for sans fille1621 (= fs(1)1621) have an abnormal germ line. Instead of producing eggs, the germ-line cells proliferate forming ovarian tumors or excessive numbers of nurse cells. The Sex-lethal gene product(s) regulate the branch point of the dosage compensation and sex determination pathways in the soma. The role of Sex-lethal in the germ line is not clear but the germ line of females homozygous for female sterile Sex-lethal alleles or germ-line clones of loss-of-function alleles are characterized by ovarian tumors. Females heterozygous for sans fille1621 or Sex-lethal are phenotypically wild type with respect to viability and fertility but females trans-heterozygous for sans fille1621 and Sex-lethal show ovarian tumors, somatic sexual transformations, and greatly reduced viability.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 919-931 ◽  
Author(s):  
P L Graham ◽  
J Kimble

Abstract Caenorhabditis elegans hermaphrodites make first sperm, then oocytes. By contrast, animals homozygous for any of six loss-of-function mutations in the gene mog-1 (for masculinization of the germ line) make sperm continuously and do not switch into oogenesis. Therefore, in mog-1 mutants, germ cells that normally would become oocytes are transformed into sperm. By contrast, somatic sexual fates are normal, suggesting that mog-1 plays a germ line-specific role in sex determination. Analyses of double mutants suggest that mog-1 negatively regulates the fem genes and/or fog-1: mog-1; fem and mog-1; fog-1 double mutants all make oocytes rather than sperm. Therefore, we propose that wild-type mog-1 is required in the hermaphrodite germ line for regulation of the switch from spermatogenesis to oogenesis rather than for specification of oogenesis per se. In addition to its role in germline sex determination, maternal mog-1 is required for embryogenesis: most progeny of a mog-1; fem or mog-1; fog-1 mother die as embryos. How might the roles of mog-1 in the sperm/oocyte switch and embryogenesis be linked? Previous work showed that fem-3 is regulated post-transcriptionally to achieve the sperm/oocyte switch. We speculate that mog-1 may function in the post-transcriptional regulation of numerous germ-line RNAs, including fem-3. A loss of mog-1 might inappropriately activate fem-3 and thereby abolish the sperm/oocyte switch; its loss might also lead to misregulation of maternal RNAs and thus embryonic death.


Author(s):  
Raghav Goyal ◽  
Ellen Baxter ◽  
Mark Van Doren

ABSTRACTIn Drosophila, sex determination in somatic cells has been well-studied and is under the control of the switch gene Sex lethal (Sxl), which is activated in females by the presence of two X chromosomes. Though sex determination is regulated differently in the germline versus the soma, Sxl is also necessary and sufficient for the female identity in germ cells. Loss of Sxl function in the germline results in ovarian germline tumors, a characteristic of male germ cells developing in a female soma. Further, XY (male) germ cells expressing Sxl are able to produce eggs when transplanted into XX (female) somatic gonads, demonstrating that Sxl is also sufficient for female sexual identity in the germline. As in the soma, the presence of two X chromosomes is sufficient to activate Sxl in the germline, but the mechanism for “counting” X chromosomes in the germline is thought to be different from the soma. Here we have explored this mechanism at both cis- and trans-levels. Our data support the model that the Sxl “establishment” promoter (SxlPE) is activated in a female-specific manner in the germline, as in the soma, but that the timing of SxlPE activation, and the DNA elements that regulate SxlPE are different from those in the soma. Nevertheless, we find that the X chromosome-encoded gene sisterless A (sisA), which helps activate Sxl in the soma, is also essential for Sxl activation in the germline. Loss of sisA function leads to loss of Sxl expression in the germline, and to ovarian tumors and germline loss. These defects can be rescued by the expression of Sxl, demonstrating that sisA lies upstream of Sxl in germline sex determination. We conclude that sisA acts as an X chromosome counting element in both the soma and the germline, but that additional factors that ensure robust, female-specific expression of Sxl in the germline remain to be discovered.


Development ◽  
1994 ◽  
Vol 120 (11) ◽  
pp. 3185-3195 ◽  
Author(s):  
B. Oliver ◽  
J. Singer ◽  
V. Laget ◽  
G. Pennetta ◽  
D. Pauli

Germ-line sex determination in Drosophila melanogaster requires an assessment of the number of X chromosomes as measured against autosomal standards (XX = female, X = male) and signaling from the soma. Both of these sex determination cues are required for female-specific Sex-lethal+ function in germ cells. The ovo+ locus encodes zinc finger protein(s) required for female-specific splicing of Sex-lethal+ pre-mRNA, making ovo+ a candidate function acting between the two principal cues and Sex-lethal+. We have made ovo reporter genes and find that they show high activity in the germ line of females and low activity in the germ line of males. XY flies transformed into somatic females do not show high levels of reporter activity, while XX flies transformed into somatic males do. This shows that high level ovo+ expression depends on the number of X chromosomes, not the somatic sexual signals. The requirement for ovo+ function is restricted to XX flies. Mutations in ovo have no effect on XY males, X0 males or XY females, but have pronounced effects on germ cell viability in XX females, XX females with sex transformed germ lines, and XX males indicating that ovo+ gene products are required for events occurring only in flies with two X chromosomes.


1991 ◽  
Vol 57 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Daniel Bachiller ◽  
Lucas Sánchez

SummaryThe experiments reported here are aimed at determining whether mutations deleting the function of the Sex-lethal (Sxl) gene are able to suppress the lethality of X0 clones, induced in females after the time when the state of activity of Sxl is irreversibly fixed by the ratio of the number of X chromosomes to sets of autosomes (X: A). This analysis was carried out by comparing the frequency of induced male clones (X0 constitution) in SxlfLS/ + and Sxl+/Sxl+ females, following irradiation at blastoderm and larval stages. The genotype used in these experiments, however, could also give rise to 2X; 2A cells homozygous for SxlfLS, and such cells would also differentiate male structures. To minimize this possibility, we have constructed a genotype made up of a ring and a rod X chromosome. In such ring-rod females the production of 2X; 2A clones homozygous for SxlfLS is a rather rare event, if possible at all. X0 male clones were produced in both types of females following irradiation at blastoderm stage, while X0 male clones were only observed in SxlfLS/ + females when irradiation took place at larval stage. In this latter case, the only X0 male clones were those that contained the SxlfLS mutation. These results support the idea of Sánchez & Nöthiger (1983) that the X: A signal irreversibly sets the state of activity of Sxl at blastoderm stage, and in addition show that X0 clones generated after that time are viable if they contain a Sxl− mutation. These results are compatible with the idea of Sxl being the only gene that responds to the X:A signal.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Lisa C Kadyk ◽  
Eric J Lambie ◽  
Judith Kimble

The germ line is the only tissue in Caenorhabditis elegans in which a stem cell population continues to divide mitotically throughout life; hence the cell cycles of the germ line and the soma are regulated differently. Here we report the genetic and phenotypic characterization of the glp-3 gene. In animals homozygous for each of five recessive loss-of-function alleles, germ cells in both hermaphrodites and males fail to progress through mitosis and meiosis, but somatic cells appear to divide normally. Germ cells in animals grown at 15° appear by DAPI staining to be uniformly arrested at the G2/M transition with <20 germ cells per gonad on average, suggesting a checkpoint-mediated arrest. In contrast, germ cells in mutant animals grown at 25° frequently proliferate slowly during adulthood, eventually forming small germ lines with several hundred germ cells. Nevertheless, cells in these small germ lines never undergo meiosis. Double mutant analysis with mutations in other genes affecting germ cell proliferation supports the idea that glp-3 may encode a gene product that is required for the mitotic and meiotic cell cycles in the C. elegans germ line.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 625-637 ◽  
Author(s):  
Jonathan Hodgkin ◽  
Andrew D. Chisholm ◽  
Michael M. Shen

Sex determination in Caenorhabditis elegans involves a cascade of major regulatory genes connecting the primary sex determining signal, X chromosome dosage, to key switch genes, which in turn direct development along either male or female pathways. Animals with one X chromosome (XO) are male, while animals with two X chromosomes (XX) are hermaphrodite: hermaphrodite development occurs because the action of the regulatory genes is modified in the germ line so that both sperm and oocytes are made inside a completely female soma. The regulatory genes are being examined by both genetic and molecular means. We discuss how these major genes, in particular the last switch gene in the cascade, tra-1, might regulate the many different sex-specific events that occur during the development of the hermaphrodite and of the male.Key words: nematode, Caenorhabditis elegans, sex determination, sexual differentiation, cell lineage analysis.


Sign in / Sign up

Export Citation Format

Share Document