scholarly journals Retinoic acid-induced spina bifida: evidence for a pathogenetic mechanism

Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 73-81 ◽  
Author(s):  
A.J. Alles ◽  
K.K. Sulik

Treatment of C57Bl/6J mice with three successive doses of all-trans retinoic acid (28 mg kg-1 body weight) on 8 day, 6 h (8d,6h), 8d,12h, and 8d,18h of gestation resulted in a high incidence (79%, 31/39 fetuses) of spina bifida with myeloschisis (spina bifida aperta) in near term fetuses. Twelve hours following the last maternal dose (9d,6h), the caudal aspects of treated embryos, were abnormal, with eversion of the neural plate at the posterior neuropore, as compared to its normal concavity in comparably staged control specimens. This eversion persisted in affected embryos through the time that the posterior neuropore should normally close. The distribution of cell death in control and experimental embryos was determined using vital staining with Nile blue sulphate and with routine histological techniques. Twelve hours following the maternal dosing regimen, experimental embryos showed evidence of excessive cell death, predominantly in the mesenchyme associated with the primitive streak and in the endoderm of the tail gut, both of which are readily identifiable sites of physiological cell death at this stage of development. In addition, the presumptive trunk neural crest cells located in the dorsal midline, cranial to the posterior neuropore, exhibited a marked amount of cell death in the experimental embryos. We propose that the major factor in the generation of spina bifida in this model is excessive cell death in the tail gut and mesenchyme ventral to the neuroepithelium of the posterior neuropore.(ABSTRACT TRUNCATED AT 250 WORDS)

Author(s):  
Lu Zhao ◽  
Dan Liu ◽  
Wei Ma ◽  
Hui Gu ◽  
Xiaowei Wei ◽  
...  

Neural tube defects (NTDs) are the most severe congenital malformations that result from failure of neural tube closure during early embryonic development, and the underlying molecular mechanisms remain elusive. Mitophagy is the best-known way of mitochondrial quality control. However, the role and regulation of mitophagy in NTDs have not yet been elucidated. In this study, we used an all-trans retinoic acid (ATRA)-induced rat model to investigate mitophagy and its underlying mechanism in spina bifida aperta (SBA). The results of western blot, immunofluorescence and RT-qPCR analyses indicated that mitophagy was impaired and Sirt1 was downregulated in SBA. Administration of resveratrol-a strong specific Sirt1 activator-activated Sirt1, thus attenuating autophagy suppression and ameliorating SBA. RNA-sequencing and bioinformatics analysis results indicated that transcriptional regulation played an important role in NTDs. A luciferase reporter assay was performed to demonstrate that the transcription factor Bhlhe40 directly bound to and negatively regulated Sirt1 expression. Further, we discovered that the Bhlhe40/Sirt1 axis regulated mitophagy in neural stem cells. Collectively, our results for the first time demonstrate that Bhlhe40/Sirt1 axis regulated mitophagy is implicated in ATRA-induced SBA. Our findings provide new insights into pathogenesis of NTDs and a basis for potential therapeutic targets for NTDs.


2020 ◽  
Author(s):  
mingyu Jiang ◽  
Ji-cheng Dai ◽  
Ming-ying Yin ◽  
Ming-yong Ren ◽  
Nan Wu ◽  
...  

Abstract Objective: To investigate the influence of signal transducer and activator of transcription-3 (STAT3) on spinal cord tissue grafts of rat fetuses with spina bifida aperta. In particular, we wished to determine if STAT3 would be related to the pathogenesis of spina bifida aperta (SBA) and permit increased survival of spinal cord transplants to improve therapeutic efficiency of cellular transplantation from 20-day pregnant (E20) rats. Method: Spina bifida aperta were induced with a single intragastric retinoic acid (140 mg/kg body weight) administration on E10. STAT3 and caspase-8 expression, caspase-8 positive cells by immunofluorescence on 14, 15, 16 and 17 day in spinal cord of rat fetuses with control group and spina bifida aperta group are analysed. The pregnant rats received fetal surgery and microinjection of Mesenchymal Stem Cells (MSCs) after STAT3 transfection on 16-day pregnant (E16), 17-day pregnant (E17) and 18-day pregnant (E18), P0, P1-6 and to P7-12 of cell passages as well as different injected cell number, then sacrificed on 20-day pregnant (E20) for spine sample collection. The Number of each group was not less than seven. The spinal cord samples were collected directly to detect survival rates of MSCs and caspase-8 expression. Results: The developmental change in caspase-8 expression of spina bifida aperta was notably increased to the top on E15 compared with no SBA fetuses with Retinoic Acid. STAT3 expression in SBA rat fetuses gradually decreased with embryonic development between E14 and E15, E15 dropped down to bottom. Specifically, the number of caspase-8 positive cells on E15 in spinal cord with SBA rat fetuses was the most; and from E16, the positive cells began to decrease. Compared with STAT3 non-transfection group, MSCs combined with STAT3 transfection on E18, P7-12 and medium injection cell number can statistically improve the success rate of transplantation. In addition, caspase-8 mRNA and protein levels were significantly decreased in STAT3 transfection transplantation contrast for SBA of cellular culture medium and STAT3 non-transfection transplantation. Conclusions: STAT3 may be associated with the pathogenesis of spina bifida aperta. Furthermore, MSCs transplantation after STAT3 transfection can increase survival rates and reduce apoptosis in the spinal column through caspase-8.


Author(s):  
Zehra S Hepp ◽  
Verena M Haas ◽  
Beatrice Latal ◽  
Martin Meuli ◽  
Ueli Möhrlen ◽  
...  

1992 ◽  
Vol 12 (11) ◽  
pp. 893-897 ◽  
Author(s):  
Juliette G. C. Omtzigt ◽  
Frans J. Los ◽  
Adriana M. Hagenaars ◽  
Patricia A. Stewart ◽  
Eva S. Sachs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document