rat fetuses
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 24)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
pp. 149-153
Author(s):  
V. M. Mikhailov ◽  
A. V. Sokolova ◽  
D. A. Ivolgin ◽  
V. M. Mikhailova
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takuya Aoshima ◽  
Yukari Kobayashi ◽  
Hisayoshi Takagi ◽  
Kenta Iijima ◽  
Masahiro Sato ◽  
...  

Abstract Background Improved genome-editing via oviductal nucleic acids delivery (i-GONAD) is a new technology that facilitates in situ genome-editing of mammalian zygotes exiting the oviductal lumen. The i-GONAD technology has been developed for use in mice, rats, and hamsters; however, oligonucleotide (ODN)-based knock-in (KI) is more inefficient in rats than mice. To improve the efficiency of i-GONAD in rats we examined KI efficiency using three guide RNAs (gRNA), crRNA1, crRNA2 and crRNA3. These gRNAs recognize different portions of the target locus, but also overlap each other in the target locus. We also examined the effects of commercially available KI -enhancing drugs (including SCR7, L755,507, RS-1, and HDR enhancer) on i-GONAD-mediated KI efficiency. Results The KI efficiency in rat fetuses generated after i-GONAD with crRNA2 and single-stranded ODN was significantly higher (24%) than crRNA1 (5%; p < 0.05) or crRNA3 (0%; p < 0.01). The KI efficiency of i-GONAD with triple gRNAs was 11%. These findings suggest that KI efficiency largely depends on the type of gRNA used. Furthermore, the KI efficiency drugs, SCR7, L755,507 and HDR enhancer, all of which are known to enhance KI efficiency, increased KI efficiency using the i-GONAD with crRNA1 protocol. In contrast, only L755,507 (15 μM) increased KI efficiency using the i-GONAD with crRNA2 protocol. None of them were significantly different. Conclusions We attempted to improve the KI efficiency of i-GONAD in rats. We demonstrated that the choice of gRNA is important for determining KI efficiency and insertion and deletion rates. Some drugs (e.g. SCR7, L755,507 and HDR enhancer) that are known to increase KI efficiency in culture cells were found to be effective in i-GONAD in rats, but their effects were limited.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253583
Author(s):  
Nathan Maassel ◽  
James Farrelly ◽  
Daniel Coman ◽  
Mollie Freedman-Weiss ◽  
Samantha Ahle ◽  
...  

Neural tube defects are a common congenital anomaly involving incomplete closure of the spinal cord. Myelomeningocele (MMC) is a severe form in which there is complete exposure of neural tissue with a lack of skin, soft tissue, or bony covering to protect the spinal cord. The all-trans retinoic acid (ATRA) induced rat model of (MMC) is a reproducible, cost-effective means of studying this disease; however, there are limited modalities to objectively quantify disease severity, or potential benefits from experimental therapies. We sought to determine the feasibility of detecting differences between MMC and wild type (WT) rat fetuses using diffusion magnetic resonance imaging techniques (MRI). Rat dams were gavage-fed ATRA to produce MMC defects in fetuses, which were surgically delivered prior to term. Average diffusion coefficient (ADC) and fractional anisotropy (FA) maps were obtained for each fetus. Brain volumes and two anatomically defined brain length measurements (D1 and D2) were significantly decreased in MMC compared to WT. Mean ADC signal was significantly increased in MMC compared to WT, but no difference was found for FA signal. In summary, ADC and brain measurements were significantly different between WT and MMC rat fetuses. ADC could be a useful complementary imaging biomarker to current histopathologic analysis of MMC models, and potentially expedite therapeutic research for this disease.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1970
Author(s):  
Claudia Tonini ◽  
Marco Segatto ◽  
Simona Bertoli ◽  
Alessandro Leone ◽  
Arianna Mazzoli ◽  
...  

Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in several body fluids. The effects of this exposure on the fetus are under active investigation in several research laboratories. The aim of our work was to study the impact of prenatal exposure to BPA in the liver of rat fetuses from a sex-dependent point of view. We particularly investigated the effects of prenatal BPA exposure on hepatic lipids because of their crucial role, not only for the liver, but also for the whole-body functions. Our results demonstrate that the liver of rat fetuses, in utero exposed to a very low dose of BPA (2.5 µg/kg/day), displays significant modulations with regard to proteins involved in cholesterol and fatty acid biosynthesis and trafficking. Moreover, an impact on inflammatory process has been observed. All these effects are dependent on sex, being observable only in female rat fetuses. In conclusion, this work demonstrates that maternal exposure to BPA compromises hepatic lipid metabolism in female offspring, and it also reveals the perspective impact of BPA on human health at doses currently considered safe.


2021 ◽  
Vol 342 ◽  
pp. 38-49
Author(s):  
Yang Li ◽  
Feifei Ma ◽  
Zengqiang Li ◽  
Yige Yu ◽  
Haoni Yan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Melese Abebe ◽  
Kaleab Asres ◽  
Yonas Bekuretsion ◽  
Samuel Woldkidan ◽  
Eyob Debebe ◽  
...  

Syzygium guineense is an important medicinal plant effective against hypertension, diabetes mellitus, and cancer but with no evidence of its teratogenicity. This study was planned to investigate the teratogenic potential of S. guineense leaves on rat embryos and fetuses. Five groups of Wistar albino rats, each consisting of ten pregnant rats, were used as experimental animals. Groups I-III rats were treated with 250, 500, and 1000 mg/kg of hydroethanolic extract of S. guineense leaves, and groups IV and V were control and ad libitum control, respectively. Rats were treated during day 6–12 of gestation. Embryos and fetuses were retrieved at day 12 and day 20 of gestation, respectively. The embryos were assessed for developmental delays and growth retardation. The fetuses were examined for gross external, skeletal, and visceral anomalies. In 12-day old rat embryos, crown-rump length, number of somites, and morphological scores were significantly reduced by the treatment of 1000 mg/kg of the extract. The external morphological and visceral examinations of rat fetuses did not reveal any detectable structural malformations in the cranial, nasal, oral cavities, and visceral organs. The ossification centers of fetal skull, vertebrae, hyoid, forelimb, and hindlimb bones were not significantly varied across all groups. However, even if not statistically significant, high-dose treated rat fetuses had a reduced number of ossification centers in the sternum, caudal vertebrae, metatarsal, metacarpal, and phalanges. Treatment with the hydroethanolic extract of S. guineense leaves produced no significant skeletal and soft tissue malformations. The plant extract did not produce significant teratogenic effects on rat embryos/fetuses up to 500 mg/kg doses but retarded the growth of embryos at high dose (1000 mg/kg) as evidenced by decreased crown-rump length, number of somites, and morphological scores. Therefore, it is not advisable to take large doses of the plant during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document