Hair follicle differentiation: expression, structure and evolutionary conservation of the hair type II keratin intermediate filament gene family

Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 417-433 ◽  
Author(s):  
B. Powell ◽  
L. Crocker ◽  
G. Rogers

During hair follicle development several cell streams are programmed to differentiate from the cell population of the follicle bulb. In the hair cells, a number of keratin gene families are transcriptionally activated. We describe the characterization of the type II keratin intermediate filament (IF) gene family which is expressed early in follicle differentiation. In sheep wool, four type II IF proteins are expressed. One gene has been completely sequenced and the expression of three of the genes examined in detail. The sequenced gene encodes a 55 × 10(3) Mr protein of the type II keratin IF protein family, designated KII-9 in the new nomenclature we have adopted and described in the Introduction. The gene has a similar exon/intron structure to the epidermal type II keratin IF genes. In situ hybridization experiments show that the genes are expressed in the hair cortical cells but not in the cells of the outer root sheath, inner root sheath or medulla. During hair keratinocyte differentiation the type II IF genes are sequentially activated and coexpressed in the same cells. Expression is first detected in cells in the middle of the follicle bulb located near the dermal papilla and, subsequently, two of the genes are transcriptionally activated in the differentiating keratinocytes as they migrate upwards, in the upper part of the bulb. A fourth type II IF gene is activated later. The genes with the same expression pattern are also closely related in sequence and a number of conserved elements are present in the promoters of those genes, including a novel element which is also found in the promoter of a coexpressed type I IF gene and three other hair keratin genes.

2004 ◽  
Vol 72 (9-10) ◽  
pp. 527-540 ◽  
Author(s):  
Michael A. Rogers ◽  
Hermelita Winter ◽  
Lutz Langbein ◽  
Raphael Bleiler ◽  
Jürgen Schweizer

2015 ◽  
Vol 7 (3) ◽  
pp. 352-357
Author(s):  
Masazumi Onishi ◽  
Kazuhiro Takahashi ◽  
Fumihiko Maeda ◽  
Toshihide Akasaka

A 70-year-old Japanese man presented at our hospital with an asymptomatic, blackish, irregularly shaped plaque with a gray nodule in the periphery on his left lower leg. The lesion had been present for 10 years and had recently enlarged, associated with bleeding. Histopathologically, the tumor consisted of three distinct parts: The first part showed massive aggregation of basophilic basaloid cells with peripheral palisading and abundant melanin granules, and was diagnosed as solid-type basal cell carcinoma. The second part showed aggregation of clear cells with squamous eddies, and was diagnosed as proliferating trichilemmal tumor. The third part showed reticular aggregation of basaloid cells with infundibular cysts in the papillary dermis, and was diagnosed as infundibulocystic basal cell carcinoma. We diagnosed this tumor as basal cell carcinoma with various forms of hair follicle differentiation, including differentiation into the outer root sheath.


2021 ◽  
pp. 1-7
Author(s):  
Jingzhu Bai ◽  
Zijian Gong ◽  
Qingfang Xu ◽  
Haiyan Chen ◽  
Qiaoping Chen ◽  
...  

<b><i>Background/Objective:</i></b> Hair cycle is regulated by many biological factors. Cathepsins are involved in various physiological processes in human skin. Here, we investigated the cathepsin expression and distribution changes in follicular growth cycles for better understanding the hair cycles and to explore new intervention measures. <b><i>Methods:</i></b> The 24 mice (C57BL/6, female, 7-week old) were selected and removed the back hair via rosin/paraffin method. At Day 8, Day 20, and Day 25, biopsy on post-plucking area was done. Immunohistochemical staining, Western blot, and Q-PCR were used to test the cathepsin B/D/L/E. <b><i>Results:</i></b> In anagen, cathepsins (B, D, L, and E) were distributed in the hair follicle matrix, inner hair root sheath, and hair. In catagen, cathepsins were mainly observed in un-apoptosis inner root sheath and outer root sheath. Expression of cathepsins B-mRNA and L-mRNA was decreased from anagen and catagen to telogen. Cathepsin D-mRNA was increased in catagen and then decreased in telogen. Cathepsin E-mRNA was decreased in catagen and slightly increased in telogen. <b><i>Conclusions:</i></b> The distribution and expression of cathepsins B, D, L, and E in hair follicle changed with hair growth process which indicated that cathepsins might act as selectable biomarkers of hair cycle in different stages.


2000 ◽  
Vol 70 (2) ◽  
pp. 181-195 ◽  
Author(s):  
P.I. Hynd

AbstractThe rôle of various classes of nutrients (energy substrates, vitamins, minerals, amino acids) in the production of wool and hair from follicles, is considered for a variety of animal species. The wool and hair follicle have evolved a number of interesting features of carbohydrate metabolism including glutaminolysis, aerobic glycolysis, significant activity of the pentose phosphate pathway, and storage and mobilisation of glycogen. Presumably the necessity to continue to produce fibre despite fluctuations in the supply of oxygen and nutrients has resulted in some of these unique features, while others reflect the high level of DNA and protein synthesis occurring in the follicle. While it is considered that energy does not normally limit fibre growth, the relative contributions of aerobic and anerobic metabolism will greatly influence the amount of ATP available for follicle activity, such that energy availability may at times alter fibre growth. Alopecia and deficient fibre growth are consistent outcomes of deficiencies of biotin, riboflavin, pyridoxine, folate and pantothenic acid, but the precise rôles of these vitamins in follicle function await elucidation. Folate, in particular appears to play an important rôle in wool production, presumably reflecting its involvement in methionine metabolism. Cholecalciferol (vitamin D) significantly alters fibre growth in cultured follicles; vitamin D receptors are located in the outer root sheath, bulb, and dermal papilla of the follicle; and alopecia occurs in humans with defects in the vitamin D receptor. Retinol (vitamin A), too, appears to influence follicle function by altering keratinocyte proliferation and differentiation, with direct effects on the expression of keratin genes. The receptors for the retinoids are present in the keratogenous zone, the outer root sheath, the bulb, and the sebaceous glands. Vitamin A may also act indirectly on follicle function by influencing the activity of the insulin-like and epidermal growth factors and by altering vitamin D activity. At present there is little evidence implicating alpha-tocopherol (vitamin E) or phytylmenaquinone (vitamin K) in follicular events. Of the minerals, only copper and zinc have been shown to have direct effects on follicle function, independent of effects on food intake. Copper has direct effects on the activity of an unidentified enzyme on oxidation of thiol groups to form disulphide linkages. Wool produced by copper-deficient sheep lacks crimp, is weak and lustrous. Copper is also necessary for the activity of tyrosinase and the tyrosinase-related proteins involved in melanin synthesis. Zinc, like copper, is required for the normal keratinization of fibres but again, the precise rôle has yet to be elucidated. While the importance of amino acid supply for wool growth has long been established, there are still some unaswered questions such as; what are the effects of amino acids on fibre growth in animals other than sheep; what are the characteristics of the amino acid transport genes and proteins operating in the wool and hair follicle; and what are the specific rôles for amino acids in follicle function.


2001 ◽  
Vol 114 (14) ◽  
pp. 2569-2575 ◽  
Author(s):  
Michael Hesse ◽  
Thomas M. Magin ◽  
Klaus Weber

We screened the draft sequence of the human genome for genes that encode intermediate filament (IF) proteins in general, and keratins in particular. The draft covers nearly all previously established IF genes including the recent cDNA and gene additions, such as pancreatic keratin 23, synemin and the novel muscle protein syncoilin. In the draft, seven novel type II keratins were identified, presumably expressed in the hair follicle/epidermal appendages. In summary, 65 IF genes were detected, placing IF among the 100 largest gene families in humans. All functional keratin genes map to the two known keratin clusters on chromosomes 12 (type II plus keratin 18) and 17 (type I), whereas other IF genes are not clustered. Of the 208 keratin-related DNA sequences, only 49 reflect true keratin genes, whereas the majority describe inactive gene fragments and processed pseudogenes. Surprisingly, nearly 90% of these inactive genes relate specifically to the genes of keratins 8 and 18. Other keratin genes, as well as those that encode non-keratin IF proteins, lack either gene fragments/pseudogenes or have only a few derivatives. As parasitic derivatives of mature mRNAs, the processed pseudogenes of keratins 8 and 18 have invaded most chromosomes, often at several positions. We describe the limits of our analysis and discuss the striking unevenness of pseudogene derivation in the IF multigene family. Finally, we propose to extend the nomenclature of Moll and colleagues to any novel keratin.


Sign in / Sign up

Export Citation Format

Share Document