scholarly journals Effects of W (c-kit) gene mutation on gametogenesis in male mice: agametic tubular segments in Wf/Wf testes

Development ◽  
1992 ◽  
Vol 114 (4) ◽  
pp. 861-867 ◽  
Author(s):  
U. Koshimizu ◽  
D. Watanabe ◽  
Y. Tajima ◽  
Y. Nishimune

Mutations of the W (c-kit) gene, which encodes a transmembrane tyrosine kinase receptor, affect the development and differentiation of many types of stem cell. Most homozygous W mutant mice are sterile, due to a lack of germ cells arising during embryonic development, but one of the notable exceptions is Wf/Wf mice, which are fully fertile in both sexes. In order to elucidate the effects of the Wf mutation on spermatogenesis, postnatal spermatogenesis in Wf/Wf mice was histologically examined. The number of gonocytes at birth was significantly reduced and small portions of agametic seminiferous tubule segments were observed in mutant mice. It is suggested that this is due to a deficiency of primordial germ cells (PGC). Other than the agametic tubules, there was no evidence of reduced spermatogenesis after birth. These results indicate that the function of the W (c-kit) gene is more necessary for the development of PGC than for postnatal germ cells.

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1090
Author(s):  
Aleksandra Dunislawska ◽  
Maria Siwek ◽  
Katarzyna Stadnicka ◽  
Marek Bednarczyk

The Green-legged Partridgelike fowl is a native, dual-purpose Polish chicken. The White Leghorn has been intensively selected for several decades to mainly improve reproductive traits. Primordial germ cells (PGCs) represent the germline stem cells in chickens and are the only cells that can transfer the information stored in the genetic material from generation to generation. The aim of the study was to carry out a transcriptomic and an epigenetic comparison of the White Leghorn and Green-legged Partridgelike gonadal PGCs (gPGCs) at three developmental stages: days 4.5, 8, and 12 of the embryonic development. RNA and DNA were isolated from collected gPGCs. The RNA was further subjected to microarray analysis. An epigenetic analysis was performed based on the global methylation analysis and qMSP method for the particular silenced genes demonstrated in transcriptomic analysis. Statistically significant differences between the gPGCs from both breeds were detected on the day 8 of embryonic development. Global methylation analysis showed significant changes at the methylation level in the White Leghorn gPGCs on day 8 of embryonic development. The results suggest faster development of Green-legged Partridgelike embryos as compared to White Leghorn embryos. Changes in the levels of gene expression during embryonic development are determined by genetic and environmental factors, and this variability is influenced by breed and gender.


2009 ◽  
Vol 30 (6) ◽  
pp. 624-712 ◽  
Author(s):  
Mark A. Edson ◽  
Ankur K. Nagaraja ◽  
Martin M. Matzuk

Abstract Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.


2000 ◽  
Vol 113 (1) ◽  
pp. 161-168 ◽  
Author(s):  
W. Yan ◽  
J. Suominen ◽  
J. Toppari

Stem cell factor (SCF) plays an important role in migration, adhesion, proliferation, and survival of primordial germ cells and spermatogonia during testicular development. However, the function of SCF in the adult testis is poorly described. We have previously shown that, in the presence of SCF, there were more type A spermatogonia incorporating thymidine at stage XII of rat seminiferous tubules cultured in vitro than in the absence of SCF, implying that the increased DNA synthesis might result from enhanced survival of spermatogonia. To explore the potential pro-survival function of SCF during spermatogenesis, the seminiferous tubules from stage XII were cultured in the presence or absence of SCF (100 ng/ml) for 8, 24, 48, and 72 hours, respectively, and apoptosis was analyzed by DNA laddering and in situ 3′-end labeling (ISEL) staining. Surprisingly, not only spermatogonia, but also spermatocytes and spermatids, were protected from apoptosis in the presence of SCF. Apoptosis took place much later and was less severe in the SCF-treated tubules than in the controls. Based on previous studies showing that FSH prevents germ cells from undergoing apoptosis in vitro, and that SCF level is increased dramatically in response to FSH stimulation, we also tested if the pro-survival effect of FSH is mediated through SCF by using a function-blocking monoclonal antibody, ACK-2, to block SCF/c-kit interaction. After 24 hours of blockade, the protective effect of FSH was partially abolished, as manifested by DNA laddering and ISEL analyses. The present study demonstrates that SCF acts as an important survival factor for germ cells in the adult rat testis and FSH pro-survival effect on germ cells is mediated partially through the SCF/c-kit pathway.


2004 ◽  
Vol 301A (4) ◽  
pp. 290-296 ◽  
Author(s):  
Tsuyoshi Fujioka ◽  
Tomoki Soh ◽  
Noboru Fujihara ◽  
Masa-Aki Hattori

Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 349-351 ◽  
Author(s):  
Massimo De Felici ◽  
Anna Di Carlo ◽  
Maurizio Pesce

During embryogenesis germ cells originate from primordial germ cells (PGCs). The development of mammalian PGCs involves a number of complex events (formation and segregation of PGC precursors, PGC migration and proliferation) which lead to the differentiation of oocytes or prospermatogonia (for a review see De Feliciet al., 1992). During recent years developments in methods for isolation, purification and culture of mouse PGCs have led to significant progress in the understanding of molecular mechanisms of migration, proliferation and differentiation of these cells (for reviews see De Felici, 1994; and De Felici & Pesce, 1994a). In this paper we describe the key role played by stem cell factor (SCF) in PGC development and early folliculogenesis.


Zygote ◽  
1998 ◽  
Vol 6 (3) ◽  
pp. 271-275 ◽  
Author(s):  
Gabriela Durcova-Hills ◽  
Katja Prelle ◽  
Sigrid Müller ◽  
Miodrag Stojkovic ◽  
Jan Motlik ◽  
...  

We studied the effect of murine leukaemia inhibitory factor (LIF), human basic fibroblast growth factor (bFGF) and porcine stem cell factor (SCF) on the survival and/or proliferation of porcine primordial germ cells (PGCs) obtained from 27-day-old embryos in vitro. PGCs were cultured in embryonic stem cell (ESC) medium supplemented with or without either LIF (1000 IU/ml) alone or LIF together with bFGF (10 ng/ml). They were seeded on mitotically inactivated feeder cells, either STO or transfected STO cells (STO#8), expressing the membrane-bound form of porcine SCF. PGCs were identified by their alkaline phosphatase (AP) activity and counted after 1, 3 and 5 days in culture. After 1 day of culture, PGCs cultured on STO#8 cells showed significantly higher survival than PGCs cultured on STO cells (p < 0.05). The combined effect of SCF and LIF caused a significant increase in PGC number by day 3 of culture when PGCs were cultured on either STO cells (p < 0.01) or STO#8 (p < 0.001). When SCF and LIF were used together with bFGF no increase in the PGC number was observed. Our results suggest that the membrane-bound form of porcine SCF plays a pivotal role in the primary culture of porcine PGCs and that bFGF is not required in vitro.


Reproduction ◽  
2016 ◽  
Vol 151 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Eunsook Park ◽  
Bobae Lee ◽  
Bruce E Clurman ◽  
Keesook Lee

Nucleoporin 50 kDa (NUP50), a component of the nuclear pore complex, is highly expressed in male germ cells, but its role in germ cells is largely unknown. In this study, we analyzed the expression and function of NUP50 during the embryonic development of germ cells using NUP50-deficient mice. NUP50 was expressed in germ cells of both sexes at embryonic day 15.5 (E15.5), E13.5, and E12.5. In addition, NUP50 expression was also detected in primordial germ cells (PGCs) migrating into the genital ridges at E9.5. The gonads of Nup50−/− embryos of both sexes contained few PGCs at both E11.5 and E12.5 and no developing germ cells at E15.5. The migratory PGCs in Nup50−/− embryos at E9.5 showed increased apoptosis but a normal rate of proliferation, resulting in the progressive loss of germ cells at later stages. Taken together, these results suggest that NUP50 plays an essential role in the survival of PGCs during embryonic development.


Sign in / Sign up

Export Citation Format

Share Document