Fate mapping the neural plate and the intraembryonic mesoblast in the upper layer of the chicken blastoderm with xenografting and time-lapse videography

Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 93-97 ◽  
Author(s):  
Hilde Bortier ◽  
L. C. A. Vakaet

The disposition of the Anlage fields of the neural plate and the intraembryonic mesoblast in the upper layer of the chicken blastoderm was studied at the primitive streak stage prior to the regression of Hensen's node (stages 5V to 6V, L. Vakaet (1970) Arch. Biol. 81, 387–426). Chicken blastoderms were cultured by New's technique on a mixture of thin egg white and agar. The anterior half of the deep layer was reflected with a tungsten needle. A circular fragment of the upper layer was punched out with a pulled out Pasteur pipette and discarded. It was replaced with an isotopic and isopolar piece of quail upper layer that was punched out with the same pipette. The deep layer was replaced and the chimeras were reincubated for 24 hours. The xenografts were followed with time-lapse videography. After fixation, the quail cells were located using Le Douarin's quail nucleolar marker technique. Integrating the observations with time-lapse videography and the results of Feulgen stained sections, we have drawn a new fate map of the disposition of the Anlage fields in the upper layer of the chicken blastoderm at stages prior to the regression of Hensen's node (stages 5V to 6V). The disposition of the neural plate and of the notochord, somites, nephrotome and lateral plates was therefore determined before the Anlage fields are morphologically discernible. The pathway of the fields in the upper layer towards their disposition was documented with time-lapse videography in chimeric chicken blastoderms that developed normally.

Development ◽  
1990 ◽  
Vol 109 (3) ◽  
pp. 667-682 ◽  
Author(s):  
C.D. Stern

The marginal zone of the chick embryo has been shown to play an important role in the formation of the hypoblast and of the primitive streak. In this study, time-lapse filming, fate mapping, ablation and transplantation experiments were combined to study its contribution to these structures. It was found that the deep (endodermal) portion of the posterior marginal zone contributes to the hypoblast and to the junctional endoblast, while the epiblast portion of the same region contributes to the epiblast of the primitive streak and to the definitive (gut) endoderm derived from it. Within the deep part of the posterior marginal zone, a subpopulation of HNK-1-positive cells contributes to the hypoblast. Removal of the deep part of the marginal zone prevents regeneration of the hypoblast but not the formation of a primitive streak. Removal of both layers of the marginal zone leads to a primitive streak of abnormal morphology but mesendodermal cells nevertheless differentiate. These results show that the two main properties of the posterior marginal zone (contributing to the hypoblast and controlling the site of primitive streak formation) are separable, and reside in different germ layers. This conclusion does not support the idea that the influence of the posterior marginal zone on the development of axial structures is due to it being the source of secondary hypoblast cells.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 891-911 ◽  
Author(s):  
K.A. Lawson ◽  
J.J. Meneses ◽  
R.A. Pedersen

The fate of cells in the epiblast at prestreak and early primitive streak stages has been studied by injecting horseradish peroxidase (HRP) into single cells in situ of 6.7-day mouse embryos and identifying the labelled descendants at midstreak to neural plate stages after one day of culture. Ectoderm was composed of descendants of epiblast progenitors that had been located in the embryonic axis anterior to the primitive streak. Embryonic mesoderm was derived from all areas of the epiblast except the distal tip and the adjacent region anterior to it: the most anterior mesoderm cells originated posteriorly, traversing the primitive streak early; labelled cells in the posterior part of the streak at the neural plate stage were derived from extreme anterior axial and paraxial epiblast progenitors; head process cells were derived from epiblast at or near the anterior end of the primitive streak. Endoderm descendants were most frequently derived from a region that included, but extended beyond, the region producing the head process: descendants of epiblast were present in endoderm by the midstreak stage, as well as at later stages. Yolk sac and amnion mesoderm developed from posterolateral and posterior epiblast. The resulting fate map is essentially the same as those of the chick and urodele and indicates that, despite geometrical differences, topological fate relationships are conserved among these vertebrates. Clonal descendants were not necessarily confined to a single germ layer or to extraembryonic mesoderm, indicating that these lineages are not separated at the beginning of gastrulation. The embryonic axis lengthened up to the neural plate stage by (1) elongation of the primitive streak through progressive incorporation of the expanding lateral and initially more anterior regions of epiblast and, (2) expansion of the region of epiblast immediately cranial to the anterior end of the primitive streak. The population doubling time of labelled cells was 7.5 h; a calculated 43% were in, or had completed, a 4th cell cycle, and no statistically significant regional differences in the number of descendants were found. This clonal analysis also showed that (1) growth in the epiblast was noncoherent and in most regions anisotropic and directed towards the primitive streak and (2) the midline did not act as a barrier to clonal spread, either in the epiblast in the anterior half of the axis or in the primitive streak. These results taken together with the fate map indicate that, while individual cells in the epiblast sheet behave independently with respect to their neighbours, morphogenetic movement during germ layer formation is coordinated in the population as a whole.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan M. Werner ◽  
Maraki Y. Negesse ◽  
Dominique L. Brooks ◽  
Allyson R. Caldwell ◽  
Jafira M. Johnson ◽  
...  

AbstractPrimary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.


Development ◽  
2002 ◽  
Vol 129 (16) ◽  
pp. 3825-3837 ◽  
Author(s):  
Lisa Maves ◽  
William Jackman ◽  
Charles B. Kimmel

The segmentation of the vertebrate hindbrain into rhombomeres is highly conserved, but how early hindbrain patterning is established is not well understood. We show that rhombomere 4 (r4) functions as an early-differentiating signaling center in the zebrafish hindbrain. Time-lapse analyses of zebrafish hindbrain development show that r4 forms first and hindbrain neuronal differentiation occurs first in r4. Two signaling molecules, FGF3 and FGF8, which are both expressed early in r4, are together required for the development of rhombomeres adjacent to r4, particularly r5 and r6. Transplantation of r4 cells can induce expression of r5/r6 markers, as can misexpression of either FGF3 or FGF8. Genetic mosaic analyses also support a role for FGF signaling acting from r4. Taken together, our findings demonstrate a crucial role for FGF-mediated inter-rhombomere signaling in promoting early hindbrain patterning and underscore the significance of organizing centers in patterning the vertebrate neural plate.


1936 ◽  
Vol 13 (2) ◽  
pp. 219-236
Author(s):  
C. H. WADDINGTON ◽  
A. COHEN

1. Experiments were made on the development of the head of chicken embryos cultivated in vitro. 2. Defects in the presumptive head region of primitive streak embryos are regulated completely if the wound fills up before the histogenesis of neural tissue begins in the head-process stage. Different methods by which the hole is filled are described. 3. No repair occurs in the head-process and head-fold stages, and in this period two masses of neural tissue cannot heal together. 4. Median defects, even if repaired as regards neural tissue, cause a failure of the ventral closure of the foregut. The lateral evaginations of the gut develop typically in atypical situations. The headfold may break through and join up with the endoderm in such a way that the gut acquires an anterior opening. 5. The paired heart rudiments may develop separately. The separate vesicles begin to contract at a time appropriate to the development of the embryo as a whole. The two hearts are mirror images, the left one having the normal curvature, but the embryos do not survive long enough for the hearts to acquire a very definite shape. 6. The forebrain has a considerable capacity for repair in the early somite stages (five to twenty-five somites). One-half of the forebrain can remodel itself into a complete forebrain. In some cases the neural plate and epidermis grow together over the wound, in others the epidermis and mesenchyme make the first covering, leaving a space along the inside of which the neural tissue grows. The neural tissue may become a very thin sheet. 7. The repaired forebrain may induce the formation of a nasal placode from the non-presumptive nasal epidermis which covers the wound. 8. If the optic vesicle is entirely removed, a new one is not formed, but parts of the vesicle can regulate to complete eye-cups, either when still attached to the forebrain or after being isolated in the extra-embryonic regions of another embryo. 9. Injured optic vesicles induce lenses from the non-presumptive epidermis which grows over the wound. Transplanted optic neural tissue from embryos of about five somites induces the formation of lentoids from extra-embryonic ectoderm, but only in a small proportion of cases. 10. The presumptive lens epidermis can produce a slight thickening even when contact with the optic cup is prevented. 11. The significance of periods of minimum regulatory power for the concept of determination is discussed. 12. The data concerning lens formation are discussed in terms of the field concept.


Development ◽  
1994 ◽  
Vol 120 (10) ◽  
pp. 2869-2877
Author(s):  
M. Myohara

Bombyx eggs at the fertilization stage (0-2 hours after oviposition) were irradiated with a scanning UV-laser microbeam (355 nm) over an area of about 1% of the total egg surface. In spite of absence of nuclei or cells at the irradiated sites, larvae from treated eggs showed localized cuticle defects in the integument. The location and frequency of the defects within the cuticular pattern correlated closely to the site of irradiation both in the anteroposterior and the dorsoventral direction. Based on the correlation, presumptive regions for each larval segment were located and a fate map of the Bombyx egg was established.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2599-2610 ◽  
Author(s):  
M. Catala ◽  
M.A. Teillet ◽  
E.M. De Robertis ◽  
M.L. Le Douarin

The spinal cord of thoracic, lumbar and caudal levels is derived from a region designated as the sinus rhomboidalis in the 6-somite-stage embryo. Using quail/chick grafts performed in ovo, we show the following. (1) The floor plate and notochord derive from a common population of cells, located in Hensen's node, which is equivalent to the chordoneural hinge (CNH) as it was defined at the tail bud stage. (2) The lateral walls and the roof of the neural tube originate caudally and laterally to Hensen's node, during the regression of which the basal plate anlage is bisected by floor plate tissue. (3) Primary and secondary neurulations involve similar morphogenetic movements but, in contrast to primary neurulation, extensive bilateral cell mixing is observed on the dorsal side of the region of secondary neurulation. (4) The posterior midline of the sinus rhomboidalis gives rise to somitic mesoderm and not to spinal cord. Moreover, mesodermal progenitors are spatially arranged along the rest of the primitive streak, more caudal cells giving rise to more lateral embryonic structures. Together with the results reported in our study of tail bud development (Catala, M., Teillet, M.-A. and Le Douarin, N.M. (1995). Mech. Dev. 51, 51–65), these results show that the mechanisms that preside at axial elongation from the 6-somite stage onwards are fundamentally similar during the complete process of neurulation.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1817-1828 ◽  
Author(s):  
P. Spann ◽  
M. Ginsburg ◽  
Z. Rangini ◽  
A. Fainsod ◽  
H. Eyal-Giladi ◽  
...  

Sax1 (previously CHox3) is a chicken homeobox gene belonging to the same homeobox gene family as the Drosophila NK1 and the honeybee HHO genes. Sax1 transcripts are present from stage 2 H&H until at least 5 days of embryonic development. However, specific localization of Sax1 transcripts could not be detected by in situ hybridization prior to stage 8-, when Sax1 transcripts are specifically localized in the neural plate, posterior to the hindbrain. From stages 8- to 15 H&H, Sax1 continues to be expressed only in the spinal part of the neural plate. The anterior border of Sax1 expression was found to be always in the transverse plane separating the youngest somite from the yet unsegmented mesodermal plate and to regress with similar dynamics to that of the segregation of the somites from the mesodermal plate. The posterior border of Sax1 expression coincides with the posterior end of the neural plate. In order to study a possible regulation of Sax1 expression by its neighboring tissues, several embryonic manipulation experiments were performed. These manipulations included: removal of somites, mesodermal plate or notochord and transplantation of a young ectopic notochord in the vicinity of the neural plate or transplantation of neural plate sections into the extraembryonic area. The results of these experiments revealed that the induction of the neural plate by the mesoderm has already occurred in full primitive streak embryos, after which Sax1 is autonomously regulated within the spinal part of the neural plate.


Development ◽  
1985 ◽  
Vol 89 (1) ◽  
pp. 15-35
Author(s):  
L. J. Smith

Each of the three primary axes of the primitive streak (6¾ days p.c.) to C-shaped (9½ days) stage mouse embryo has a specific relationship to the uterine horn axes. By a retrograde analysis of younger sectioned embryos it has been possible to construct an axis fate map for the implanting 4¼-day blastocyst and to show how its implantation in one or the other of two specific orientations to the ends and walls of the horn leads to these embryo-horn relationships. The implanting blastocyst axis fate map can be related to an axis fate map of the attached blastocyst (Smith, 1980) since these too are in one or the other of two orientations to the ends and walls of the horn. It is suggested that the asymmetries of the attached and implanting blastocysts that allowed the distinctive attachment and implantation orientations to be recognized, are the initial expressions of a three-dimensional system of positional information that is present in the attached blastocyst.


Sign in / Sign up

Export Citation Format

Share Document