Sex determination in germ line chimeras of Drosophila melanogaster

Development ◽  
1977 ◽  
Vol 37 (1) ◽  
pp. 173-185 ◽  
Author(s):  
E. B. van Deusen

Of 55 flies developing from blastoderms which had received male or female pole cell transplants, 15 (7 females and 8 males) were shown by progeny testing to be germ line chimeras. Since donor and host pole cells were genetically marked with contrasting X- or Y-linked alleles, the progeny testing scheme enabled the genotypic sex of the donor component undergoing gametogenesis to be identified as either the same as (‘homosexual’ chimeras) or opposite (‘heterosexual’ chimeras) that of the host. All seven of the female chimeras were identified as ‘homosexual’ chimeras carrying only chromosomally female donor and XX host germ cells. Similarly, all eight males were shown to be ‘homosexual’ chimeras with chromosomally male XY donor and XY host germ cells. The chromosomal sex of the donor component undergoing gametogenesis was in every case the same as the phenotypic sex of the host. Since there is an equal probability of constructing either a ‘homosexual’ or a ‘heterosexual’ chimera during pole cell transplantation, the ability of pole cells to differentiate functional gametes in hosts of the opposite sex was tested 50 % of the time even if sex reversal of these donor pole cells could not be demonstrated. Thus the absence of ‘heterosexual’ chimerism strongly supports the interpretation that the phenotypic sex of a germ cell in Drosophila is determined entirely by its own chromosome constitution, not by that of the gonadal mesoderm.

Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 813-816 ◽  
Author(s):  
B. Granadino ◽  
P. Santamaria ◽  
L. Sanchez

The germ line exhibits sexual dimorphism as do the somatic tissues. Cells with the 2X;2A chromosome constitution will follow the oogenic pathway and X;2A cells will develop into sperm. In both somatic and germ-line tissues, the sexual pathway chosen by the cells depends on the gene Sex-lethal (Sxl), whose function is continuously needed for female development. In the soma, the sex of the cells is autonomously determined by the X:A signal while, in the germ line, the sex is determined by cell autonomous (the X:A signal) and somatic inductive signals. Three X-linked genes have been identified, scute (sc), sisterless-a (sis-a) and runt (run), that determine the initial functional state of Sxl in the soma. Using pole cell transplantation, we have tested whether these genes are also needed to activate Sxl in the germ line. We found that germ cells simultaneously heterozygous for sc, sis-a, run and a deficiency for Sxl transplanted into wild-type female hosts develop into functional oocytes. We conclude that the genes sc, sis-a and run needed to activate Sxl in the soma seem not to be required to activate this gene in the germ line; therefore, the X:A signal would be made up by different genes in somatic and germ-line tissues. The Sxlf7M1/Sxlfc females do not have developed ovaries. We have shown that germ cells of this genotype transplanted into wild-type female hosts produce functional oocytes. We conclude that the somatic component of the gonads in Sxlf7M1/Sxlfc females is affected, and consequently germ cells do not develop.(ABSTRACT TRUNCATED AT 250 WORDS)


Genetics ◽  
1993 ◽  
Vol 134 (4) ◽  
pp. 1145-1148
Author(s):  
P A Lawrence ◽  
M Ashburner ◽  
P Johnston

Abstract We have made hybrid embryos in Drosophila by pole cell transplants, by transferring pole cells from two species, D. rajasekari and D. eugracilis, into sterile D. melanogaster hosts. These females were then mated to melanogaster males and the older these females were, the further their hybrid offspring developed. In the case of the rajasekari/melanogaster hybrids, the embryos form cuticle but had defective heads, while the eugracilis/melanogaster hatched as larvae that grew but did not moult to the second instar. Hybrid pole cells could be transferred to melanogaster hosts but they failed to make eggs.


Development ◽  
1988 ◽  
Vol 103 (4) ◽  
pp. 625-640 ◽  
Author(s):  
B. Hay ◽  
L. Ackerman ◽  
S. Barbel ◽  
L.Y. Jan ◽  
Y.N. Jan

Information necessary for the formation of pole cells, precursors of the germ line, is provided maternally and localized to the posterior pole of the Drosophila egg. The maternal origin and posterior localization of polar granules suggest that they may be associated with pole cell determinants. We have generated an antibody (Mab46F11) against polar granules. In oocytes and early embryos, the Mab46F11 antigen is sharply localized to the posterior embryonic pole. In pole cells, it becomes associated with nuclear bodies within, and nuage around, the nucleus. Immunoreactivity remains associated with cells of the germ line throughout the life cycle of both males and females. This antibody recognizes a 72–74 × 10(3) Mr protein and is useful both as a pole lineage marker and in biochemical studies of polar granules.


Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 885-893 ◽  
Author(s):  
S. Kobayashi ◽  
T. Kitamura ◽  
H. Sasaki ◽  
M. Okada

In Drosophila, it has been postulated that the third intron of the P-element is spliced only in germ-line cells. To test whether this postulate is applicable to pole cells, the progenitor cells of germ line, we carried out a histochemical assay to detect the splicing activity in embryos. The splicing activity was detected in pole cells and primordial germ cells. The activity increased to reach a maximum at 5–6 hours AEL (after egg laying), then decreased to an undetectable level by 8–9 hours AEL. The splicing activity showed a small second peak at 12–15 hours AEL. It was rather unexpected that not all pole cells were capable of splicing the third intron. Almost all pole cells that had the splicing activity at 5–6 hours AEL penetrated the embryonic gonads and differentiated into primordial germ cells. Our findings suggest that pole cells are selected to penetrate the gonads while they are migrating from the proctodeal cavity to the gonads. Furthermore, these results suggest that the machinery to splice the P-element is active in some pole cells, and that this activity is used for processing transcripts of genes that play important roles in the differentiation of pole cells into primordial germ cells.


Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
D. Hilfiker-Kleiner ◽  
A. Dubendorfer ◽  
A. Hilfiker ◽  
R. Nothiger

In Musca domestica, sex in the soma is cell autonomously determined by the male-determiner M, or by the female-determiner FD. Transplanted pole cells (precursors of the germ line) show that sex determination of germ cells is non-autonomous genotypically male pole cells form functional eggs in female hosts, and genotypically female pole cells form functional sperm in male hosts. When M/+ cells undergo oogenesis, a male-determining maternal effect predetermines offspring without M, i.e. of female genotype, to develop as fertile males. FD is epistatic to M in the female germ line, as it is in the soma, overruling the masculinizing effect of M. The results suggest that maternal F product is needed for activation of the zygotic F gene.


1992 ◽  
Vol 103 (4) ◽  
pp. 1021-1030 ◽  
Author(s):  
C.F. Lehner

Cytokinesis is developmentally controlled during Drosophila embryogenesis. It is omitted during the initial nuclear division cycles. The nuclei of the resulting syncytium are then cellularized at a defined stage, and cytokinesis starts in somatic cells with mitosis 14. However, cytokinesis never occurs in somatic cells of embryos homozygous or transheterozygous for mutations in the pebble gene. Interestingly, the process of cellularization, which involves steps mechanistically similar to cytokinesis, is not affected. Moreover, all the nuclear aspects of mitosis (nuclear envelope breakdown, chromosome condensation, spindle assembly and function) proceed normally in pebble mutant embryos, indicating that pebble is specifically required for the coordination of mitotic spindle and contractile ring functions. The pebble phenotype is also observed, but only with very low penetrance, during the early divisions of the germ line progenitors (the pole cells). alpha-Amanitin injection experiments indicate that these early pole cell divisions, the first cell divisions during embryogenesis, do not require zygotic gene expression. These divisions might therefore rely on maternally contributed pebble function. The maternal contribution from heterozygous mothers might be insufficient in rare cases for all the pole cell divisions.


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1023-1029 ◽  
Author(s):  
M. Mukai ◽  
M. Kashikawa ◽  
S. Kobayashi

In many animal groups, the interaction between germ and somatic line is required for germ-line development. In Drosophila, the germ-line precursors (pole cells) formed at the posterior tip of the embryos migrate toward the mesodermal layer where they adhere to the dorsolateral mesoderm, which ensheaths the pole cells to form the embryonic gonads. These mesodermal cells may control the expression of genes that function in pole cells for their development into germ cells. However, such downstream genes have not been isolated. In this study, we identify a novel transcript, indora (idr), which is expressed only in pole cells within the gonads. Reduction of idr transcripts by an antisense idr expression caused the failure of pole cells to produce functional germ cells in females. Furthermore, we demonstrate that idr expression depends on the presence of the dorsolateral mesoderm, but it does not necessarily require its specification as the gonadal mesoderm. Our findings suggest that the induction of idr in pole cells by the mesodermal cells is required for germ-line development.


1960 ◽  
Vol 13 (4) ◽  
pp. 541 ◽  
Author(s):  
DF Poulson ◽  
DF Waterhouse

Highly localized irradiation with ultraviolet of the posterior polar region of eggs of Drosophila melanogaster and Lucilia cuprina in pre.pole cell and pole cell stages results in reduction in numbers of the cuprophilic cells of the middle midgut as well as in reduction of gonad size and number. Carefully timed eggs were exposed to dosages of ultraviolet (from a source giving about 90 per cent. at wavelength 2536 A) ranging from 1200 to 2400 I-' W sec/cm2 over periods of 2-4 min. Treatments at the time of active pole cell formation were found to be most effective in producing defects of both gut and gonads, thus demon� strating the common origin of the cuprophilic cells of the middle midgut and the germ cells of the gonads.


2005 ◽  
Vol 25 (18) ◽  
pp. 8215-8227 ◽  
Author(s):  
Tibor Pankotai ◽  
Orbán Komonyi ◽  
László Bodai ◽  
Zsuzsanna Újfaludi ◽  
Selen Muratoglu ◽  
...  

ABSTRACT In Drosophila and several other metazoan organisms, there are two genes that encode related but distinct homologs of ADA2-type transcriptional adaptors. Here we describe mutations of the two Ada2 genes of Drosophila melanogaster. By using mutant Drosophila lines, which allow the functional study of individual ADA2s, we demonstrate that both Drosophila Ada2 genes are essential. Ada2a and Ada2b null homozygotes are late-larva and late-pupa lethal, respectively. Double mutants have a phenotype identical to that of the Ada2a mutant. The overproduction of ADA2a protein from transgenes cannot rescue the defects resulting from the loss of Ada2b, nor does complementation work vice versa, indicating that the two Ada2 genes of Drosophila have different functions. An analysis of germ line mosaics generated by pole-cell transplantation revealed that the Ada2a function (similar to that reported for Ada2b) is required in the female germ line. A loss of the function of either of the Ada2 genes interferes with cell proliferation. Interestingly, the Ada2b null mutation reduces histone H3 K14 and H3 K9 acetylation and changes TAF10 localization, while the Ada2a null mutation does not. Moreover, the two ADA2s are differently required for the expression of the rosy gene, involved in eye pigment production, and for Dmp53-mediated apoptosis. The data presented here demonstrate that the two genes encoding homologous transcriptional adaptor ADA2 proteins in Drosophila are both essential but are functionally distinct.


Sign in / Sign up

Export Citation Format

Share Document