Autonomy and non-autonomy in Drosophila mesoderm determination and morphogenesis

Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 853-859 ◽  
Author(s):  
M. Leptin ◽  
S. Roth

The mesoderm in Drosophila invaginates by a series of characteristic cell shape changes. Mosaics of wild-type cells in an environment of mutant cells incapable of making mesodermal invaginations show that this morphogenetic behaviour does not require interactions between large numbers of cells but that small patches of cells can invaginate independent of their neighbours' behaviour. While the initiation of cell shape change is locally autonomous, the shapes the cells assume are partly determined by the individual cell's environment. Cytoplasmic transplantation experiments show that areas of cells expressing mesodermal genes ectopically at any position in the egg form an invagination. We propose that ventral furrow formation is the consequence of all prospective mesodermal cells independently following their developmental program. Gene expression at the border of the mesoderm is induced by the apposition of mesodermal and non-mesodermal cells.

Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 903-914 ◽  
Author(s):  
N. Harden ◽  
H.Y. Loh ◽  
W. Chia ◽  
L. Lim

The Rho subfamily of Ras-related small GTP-binding proteins is involved in regulation of the cytoskeleton. The cytoskeletal changes induced by two members of this subfamily, Rho and Rac, in response to growth factor stimulation, have dramatic effects on cell morphology. We are interested in using Drosophila as a system for studying how such effects participate in development. We have identified two Drosophila genes, DRacA and DRacB, encoding proteins with homology to mammalian Rac1 and Rac2. We have made transgenic flies bearing dominant inhibitory (N17DRacA), and wild-type versions of the DRacA cDNA under control of an Hsp70 promoter. Expression of the N17DRacA transgene during embryonic development causes a high frequency of defects in dorsal closure which are due to disruption of cell shape changes in the lateral epidermis. Embryonic expression of N17DRacA also affects germband retraction and head involution. The epidermal cell shape defects caused by expression of N17DRacA are accompanied by disruption of a localized accumulation of actin and myosin thought to be driving epidermal cell shape change. Thus the Rho subfamily may be generating localized changes in the cytoskeleton during Drosophila development in a similar fashion to that seen in mammalian and yeast cells. The Rho subfamily is likely to be participating in a wide range of developmental processes in Drosophila through its regulation of the cytoskeleton.


1989 ◽  
Vol 92 (3) ◽  
pp. 473-485
Author(s):  
I. Kuter ◽  
B. Johnson-Wint ◽  
N. Beaupre ◽  
J. Gross

We have investigated the relationship between collagenase production, cell shape and stimulatory factors in cell culture. In a homogeneous culture of primary rabbit corneal stromal cells, shape change induced by a variety of agents was not effective in stimulating collagenase secretion. Only in the presence of a biologically active cytokine or phorbol myristate acetate was a correlation seen between changes in cell shape (induced by a second agent) and collagenase secretion by these primary cells. Cell shape changes were not, however, necessary for collagenase secretion, since certain concentrations of endotoxin or lactalbumin hydrolysate effected secretion of the enzyme in the absence of morphological changes. With passaged cells or mixed cell cultures, where cell shape change did correlate with collagenase secretion without the addition of an exogenous agent, the production of an effective cytokine (autocrine or paracrine) was demonstrated. Thus cell shape change seems to be neither universally necessary nor sufficient for the stimulation of collagenase secretion. It is proposed that the function of cytokines may be more immediately related to gene expression in this system than is change in the shape of the cell. The hypothesis is presented that cell shape changes may render the target cells receptive to cytokines, perhaps by replacing the need for a natural cytokine cofactor. It is also demonstrated here that the use of passaged cells, mixed cell cultures containing endogenous cytokine-secreting cells or tissue culture additives can profoundly affect the interpretation of the effect of various agents on collagenase secretion, and may lead to observations that are not directly relevant to cell function in vivo.


2014 ◽  
Vol 107 (4) ◽  
pp. 998-1010 ◽  
Author(s):  
Oleg Polyakov ◽  
Bing He ◽  
Michael Swan ◽  
Joshua W. Shaevitz ◽  
Matthias Kaschube ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 1383 ◽  
Author(s):  
Rhiannon Roberts ◽  
Maurice Hallett

Perhaps the most important feature of neutrophils is their ability to rapidly change shape. In the bloodstream, the neutrophils circulate as almost spherical cells, with the ability to deform in order to pass along narrower capillaries. Upon receiving the signal to extravasate, they are able to transform their morphology and flatten onto the endothelium surface. This transition, from a spherical to a flattened morphology, is the first key step which neutrophils undergo before moving out of the blood and into the extravascular tissue space. Once they have migrated through tissues towards sites of infection, neutrophils carry out their primary role—killing infecting microbes by performing phagocytosis and producing toxic reactive oxygen species within the microbe-containing phagosome. Phagocytosis involves the second key morphology change that neutrophils undergo, with the formation of pseudopodia which capture the microbe within an internal vesicle. Both the spherical to flattened stage and the phagocytic capture stage are rapid, each being completed within 100 s. Knowing how these rapid cell shape changes occur in neutrophils is thus fundamental to understanding neutrophil behaviour. This article will discuss advances in our current knowledge of this process, and also identify an important regulated molecular event which may represent an important target for anti-inflammatory therapy.


Development ◽  
1975 ◽  
Vol 34 (1) ◽  
pp. 265-277
Author(s):  
J. R. Downie

Since their discovery, cytoplasmic microtubules have been much studied in the context of cell movement and cell shape change. Much of the work has used drugs, particularly colchicine and its relatives, which break down microtubules — the so-called anti-tubulins. Colchicine inhibits the orientated movements of many cell types in vitro, and disrupts cell shape change in several morphogenetic situations. The investigation reported here used chick blastoderm expansion in New culture in an attempt to quantify the colchicine effect on orientated cell movement. However, although colchicine could halt blastoderm expansion entirely, a simple interpretation was not possible. (1) Colchicine at concentrations capable of blocking mitosis, and of disrupting all or most of the cytoplasmic microtubules of the cells studied, inhibited blastoderm expansion, often resulting in an overall retraction of the cell sheet. (2) Though blastoderm expansion does normally involve considerable cell proliferation, the colchicine effect could not be ascribed to a block on cell division since aminopterin, which stops cell division without affecting microtubules, did not inhibit expansion. (3) Blastoderm expansion is effected by the locomotion of a specialized band of edge cells at the blastoderm periphery. These are the only cells normally attached to the vitelline membrane — the substrate for expansion. When most of the blastoderm was excised, leaving the band of edge cells, and the cultures then treated with colchicine, expansion occurred normally. The colchicine effect on blastoderm expansion could not therefore be ascribed to a direct effect on the edge cells. (4) An alternative site of action of the drug is the remaining cells of the blastoderm. These normally become progressively flatter as expansion proceeds. If flattening in these cells is even partially dependent on their cytoplasmic microtubules, disruption of these microtubules might result in the inherent contractility of the cells resisting and eventually halting edge cell migration. That cell shape in these cells is dependent on microtubules was demonstrated by treating flat blastoderm fragments with colchicine. On incubation, the area occupied by these fragments decreased by 25–30 % more than controls. The significance of these results in the general context of orientated cell movements and cell shape determination is discussed, with particular emphasis on the analogous system of Fundulus epiboly.


2009 ◽  
Vol 6 (6) ◽  
pp. 458-464 ◽  
Author(s):  
Guy B Blanchard ◽  
Alexandre J Kabla ◽  
Nora L Schultz ◽  
Lucy C Butler ◽  
Benedicte Sanson ◽  
...  

2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Hui-Chia Yu-Kemp ◽  
Rachel A. Szymanski ◽  
Daniel B. Cortes ◽  
Nicole C. Gadda ◽  
Madeline L. Lillich ◽  
...  

Epithelial cells assemble specialized actomyosin structures at E-Cadherin–based cell–cell junctions, and the force exerted drives cell shape change during morphogenesis. The mechanisms that build this supramolecular actomyosin structure remain unclear. We used ZO-knockdown MDCK cells, which assemble a robust, polarized, and highly organized actomyosin cytoskeleton at the zonula adherens, combining genetic and pharmacologic approaches with superresolution microscopy to define molecular machines required. To our surprise, inhibiting individual actin assembly pathways (Arp2/3, formins, or Ena/VASP) did not prevent or delay assembly of this polarized actomyosin structure. Instead, as junctions matured, micron-scale supramolecular myosin arrays assembled, with aligned stacks of myosin filaments adjacent to the apical membrane, overlying disorganized actin filaments. This suggested that myosin arrays might bundle actin at mature junctions. Consistent with this idea, inhibiting ROCK or myosin ATPase disrupted myosin localization/organization and prevented actin bundling and polarization. We obtained similar results in Caco-2 cells. These results suggest a novel role for myosin self-assembly, helping drive actin organization to facilitate cell shape change.


2002 ◽  
Vol 39 (3) ◽  
pp. 341-352 ◽  
Author(s):  
Christopher J. Lux ◽  
Jens Starke ◽  
Jan Rübel ◽  
Angelika Stellzig ◽  
Gerda Komposch

Objective: An approach based on Euclidean distances between cephalometric landmarks is presented (1) to visualize and localize the individual shape changes of the complex craniofacial skeleton during growth and (2) to depict the individual dynamic behavior of developmental size and shape changes. Patients and Method: Growth-related craniofacial changes were investigated exemplarily for two male orthodontically untreated subjects from the Belfast Growth Study on the basis of lateral cephalograms at 7, 9, 11, 13, and 15 years. The interlandmark distances among seven skeletal cephalometric landmarks served as a database for the study. A modified Karhunen-Loèvedecomposition based on orthogonal modes and time-dependent scalar amplitudes was used to describe the growth process. The individual shape changes of the various craniofacial regions were visualized by allocation of colors to the respective distances, and overdrawn representations were reconstructed by means of multidimensional scaling. Results and Conclusions: This visualization technique allows anatomical regions to be characterized with respect to reduced or strengthened growth, compared with pure size changes. The clinically relevant mechanisms of craniofacial changes are visualized (e.g., shifts in the anteroposterior or vertical dimensions of the jaws in relation to cranial base and structural imbalances during development). In addition, overdrawing the effects of shape change on the skeletal structures gives a more readily comprehensible impression of the growth process. Taking account of the methodical limitations of this approach (e.g., the restrictions concerning the number of landmarks), the clinician may take advantage of this technique in orthodontic or surgical diagnostics to gain additional insight into the individual complex size and shape changes during development along with their dynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document