Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription

Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 113-122 ◽  
Author(s):  
E. Christians ◽  
E. Campion ◽  
E.M. Thompson ◽  
J.P. Renard

Activation of the mouse embryonic genome at the 2-cell stage is characterized by the synthesis of several alpha-amanitin-sensitive polypeptides, some of which belong to the multigenic hsp 70 family. In the present work we show that a member of this family, the HSP 70.1 gene, is highly transcribed at the onset of zygotic genome activation. Transcription of this gene began as early as the 1-cell stage. Expression of the gene continued through the early 2-cell stage but was repressed before the completion of the second round of DNA replication. During this period we observed that the level of transcription was modulated by in vitro culture conditions. The coincidence of repression of HSP70.1 transcription with the second round of DNA replication was not found for other transcription-dependent polypeptides synthesized at the 2-cell stage.

2008 ◽  
Vol 20 (7) ◽  
pp. 818 ◽  
Author(s):  
Luca Magnani ◽  
Christine M. Johnson ◽  
Ryan A. Cabot

Zygotic genome activation (ZGA) is a major event during cleavage development. In vitro manipulation of mammalian embryos (including embryo culture) can result in developmental arrest around the time of ZGA. Eukaryotic elongation initiation factor 1A (eIF1A) has been used as a marker for ZGA in some mammalian species. We hypothesised expression of eIF1A can be used to assess ZGA in the pig; we also hypothesised that the expression profile of eIF1A can be used to assess developmental potential in vitro. The aims of the present study were to determine the expression pattern of eIF1A during porcine cleavage development and to assess its expression levels in embryos of different quality. We used a real-time reverse transcription–polymerase chain reaction assay to quantify eIF1A transcripts at different time points during cleavage development in porcine embryos produced by parthenogenetic activation (PA) and in vitro fertilisation (IVF). We found that eIF1A is activated at the two-cell stage in IVF embryos and at the four-cell stage in PA embryos. We showed that the increase in transcript levels observed in parthenogenetic embryos is dependent on de novo transcription. We found altered levels of eIF1A transcripts in parthenogenetic embryos that presented as either two- or eight-cell embryos 48 h after activation compared with four-cell embryos at the same time point. Our work supports the hypothesis that eIF1A is a marker of porcine ZGA and its expression profile can be used to assess embryo quality.


2013 ◽  
Vol 25 (1) ◽  
pp. 193
Author(s):  
J. Caudle ◽  
C. K. Hamilton ◽  
F. A. Ashkar ◽  
W. A. King

Sexual dimorphisms such as differences in growth rate and metabolism have been observed in the early embryo, suggesting that sex chromosome-linked gene expression may play an active role in early embryo development. Furthermore, in vitro sex ratios are often skewed toward males, indicating that Y-linked genes may benefit development. While little attention has been paid to the Y chromosome, expression of some Y-linked genes such as SRY and ZFY has been identified in the early embryo, and only a few studies have systematically examined early stages. Identification of transcripts of Y-linked genes in the early embryo may provide insights into male development and provide markers of embryonic genome activation in male embryos. The objectives of this study were i) to examine the timing of transcription of 2 Y chromosome-linked genes involved with sperm production and male development, ubiquitin-specific peptidase 9 (USP9Y) and zinc finger protein (ZFY), in in vitro-produced bovine embryos from the 2-cell stage to the blastocyst stage and ii) to determine if USP9Y and ZFY transcripts are present in in vitro-produced embryos arrested at the 2- to 8-cell stages. To examine the chronology of transcription of these genes, pools of 30 embryos for each developmental stage, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst, were produced by bovine standard in vitro embryo production (Ashkar et al. 2010 Hum. Reprod. 252, 334–344) using semen from a single bull. Pools of 30 were used to balance sex ratios and to account for naturally arresting embryos. Embryos for each developmental stage were harvested and snap frozen. Total RNA was extracted from each pool, reverse transcribed to cDNA and by using PCR, and transcripts of USP9Y and ZFY were detected as positive or negative. In addition pools of 30 embryos arrested at the 2- to 8-cell stage harvested 7 days after IVF were processed and analysed in the same way to determine if transcripts from the Y chromosomes are present in developmentally arrested embryos. Transcripts of USP9Y and ZFY were detected in the pooled embryos from the 8-cell stage through to the blastocyst stage, but none were detected in the 2-cell or 4-cell pools. Transcripts of ZFY were detected in the arrested 2- to 8-cell embryo pool, but transcripts of USP9Y were not detected. Given that these Y genes begin expression at the 8-cell stage, coincident with embryonic genome activation, it was concluded that these genes may be important for early male embryo development. Furthermore, the results suggest that arrested embryos that have stopped cleaving before the major activation of the embryonic genome are still capable of transcribing at least some of these genes. The absence of USP9Y transcripts in the arrested embryos suggests that it may be important for early male embryo development. Funding was provided by NSERC, the CRC program, and the OVC scholarship program.


2017 ◽  
Author(s):  
Hannah Demond ◽  
Debora Dankert ◽  
Ruth Grümmer ◽  
Bernhard Horsthemke

AbstractDelayed ovulation, or preovulatory aging, can seriously compromise the developmental competence of oocytes. In the present study, we have investigated the effect of preovulatory aging on preimplantation embryos. Delaying ovulation with the gonadotropin releasing hormone (GnRH) antagonist Cetrorelix led to a decline in 2-cell rate from 76 to 46%. From control mice, an average of 17 embryos per mouse was retrieved. This number decreased to a mean of 5 embryos per mouse after preovulatory aging, suggesting that fertilization is impaired by aging. For analysis of zygotic genome activation, 2-cell embryos were incubated with BrUTP, which was incorporated into nascent RNA and detected by immunohistochemistry. A 2.85-fold increase in fluorescence intensity was detected after aging, pointing to a precocious activation of the genome. A possible effect of preovulatory aging on genomic imprint maintenance was investigated at the 8-cell stage. Deep amplicon bisulfite sequencing of Igf2r, Snrpn, H19 and Pou5f1 showed no significant changes between embryos derived from preovulatory-aged oocytes and control embryos, indicating stable imprint maintenance throughout epigenetic reprogramming. We conclude that preovulatory aging of the oocyte affects fertilization and embryonic genomic activation.


2017 ◽  
Vol 29 (1) ◽  
pp. 142 ◽  
Author(s):  
D. Salilew-Wondim ◽  
M. Hoelker ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
E. Held ◽  
...  

Suboptimal culture condition before minor or major genome activation is believed to affect the quality and the transcriptome landscape of the resulting blastocysts. Thus, we hypothesised that exposure of bovine embryos to suboptimal culture condition before minor embryonic genome activation could affect the genome methylation patterns of the resulting blastocysts. Therefore, here we aimed to investigate the genome wide DNA methylation patterns of blastocysts derived from embryos developed up to 2-cell stages in vivo followed by in vitro culture. For this, Simmental heifers were superovulated and artificially inseminated. The 2-cell stage embryos were then flushed using a state-of-the-art nonsurgical endoscopic early-stage embryo flushing technique and in vitro cultured until the blastocyst stage. The DNA methylation patterns of these blastocysts were then determined with reference to blastocysts derived from embryos developed completely under in vivo condition. For this, the genomic DNA isolated from each blastocyst group were fragmented, and unmethylated genomic regions were cleaved using methylation sensitive restriction enzymes. The samples were then amplified using ligation mediated PCR and labelled either with Cy-3 or Cy-5 dyes in a dye-swap design using the ULS Fluorescent genomic DNA labelling kit (Kreatech Biotechnology) and hybridized on an EmbryoGENE DNA Methylation Array as described previously (Saadi 2014 BMC Genomics 15, 451; Salilew-Wondim 2015 PLoS ONE 10, e0140467). Array hybridization was performed for 40 h at 65°C, and 4 hybridizations were preformed to represent 4 biological replicates. The slides were scanned using Agilent’s High-Resolution C Scanner (Agilent Technologies, Santa Clara, CA, USA), and Agilent’s Feature Extraction software (Agilent Technologies) was used to extract data features. Differentially methylated regions with fold change ≥1.5 and P-value < 0.05 were identified using linear modelling for microarray and R software. The results have shown that including imprinted genes (PEG3, IGF1, RASGRF1, IGF2R, GRB10, SNRPN, and PLAGL1) and DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), a total of 10,388 genomic regions were differentially methylated, of which 6393 genomic regions were hypermethylated in blastocysts derived from 2-cell flush compared with the complete vivo group. In addition, comparative analysis of the current DNA methylation data with our previous transcriptome profile data have shown that including DNMT3A, CTSZ, ElF3E, and PPP2R2B, the expression patterns of 603 genes was inversely correlated with the methylation patterns. Moreover, canonical pathways including gap junction, adherens junction, axon guidance, focal adhesion, and calcium signalling were affected by differentially methylated regions. Therefore, this study indicated that exposure of embryos to suboptimal culture condition before embryonic genome activation would lead to a massive dysregulation of methylation pattern of genes involved in developmentally relevant pathways in the resulting blastocysts.


2005 ◽  
Vol 17 (2) ◽  
pp. 210
Author(s):  
N. Ruddock ◽  
J. Xue ◽  
L. Sanchez-Partida ◽  
M. Cooney ◽  
N. Korfiatis ◽  
...  

The presence of MBD4, a member of the methyl binding domain family, was investigated in both murine and bovine oocytes and pre-implantation embryos. MBD4 is the only MBD family member that is involved in DNA repair but not active in transcriptional repression or in the formation of complexes with histone deacetylase complexes (HDACs). It contains a mismatch-specific glycosylase domain that acts to repair G:T mismatches within a CpG context. Bovine cumulus oocyte complexes were collected from abattoir-derived ovaries, matured in vitro and used for IVF as described previously (Ruddock et al. 2004 Biol. Reprod. 70, 1131–1135). Samples were analyzed at all steps in this process. Murine oocytes were collected from superovulated mice (C57BL6 × CBA) and subjected to conventional IVF. A polyclonal antibody derived in the rabbit against human peptides from specific regions of MBD4 (Imgenex, San Diego, CA, USA) was used to localize MBD4 protein. This antibody was tested at a variety of concentrations against both human HL60 leukemia cells and bovine embryos. Staining of HL60 cells was optimum at 32–64 μg/mL and embryos at 64 μg/mL. Briefly, the staining protocol consisted of fixing cells and zona-free oocytes or embryos in 4% paraformaldehyde for 15 min, followed by 15 min in 0.1% Triton X-100. Primary antibody incubation was performed overnight at 4°C. Embryos were then washed in blocking buffer for 1 hr prior to incubation at 4°C in mouse anti-rabbit IgG conjugated to FITC in blocking buffer for 30 min in the dark. Lastly, embryos were incubated in 10 μg/L Hoescht 33342 for 15 min, and then washed and mounted with Vectashield (Vector Labs, Burlingame, CA, USA). Negative controls contained no primary antibody. Mounted cells/embryos were viewed by epifluorescence microscopy. MBD4 was found to be expressed in both murine and bovine oocytes and pre-implantation embryos. In the cow, faint nuclear expression was detected at the 2-cell stage, followed by exclusion of the protein from the nucleus until the blastocyst stage of development. At this stage, staining was primarily nuclear and quite intense. In the mouse, staining was cytoplasmic at the 2 pronuclear stage, but was then concentrated in the nucleus from the 2-cell stage onward. It will be interesting to determine if this is due to the different timing of embryonic genome activation between the two species, hence implying a role for MBD4 in this important biological process. Further investigations are underway to compare the subcellular localization of the other MBD proteins in both species during preimplantation development and to identify a role for MBD4 in embryonic genome activation.


Zygote ◽  
2002 ◽  
Vol 10 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Aaron J. Bonk ◽  
Jon E. Anderson ◽  
Lalantha R. Abeydeera ◽  
Billy N. Day ◽  
Randall S. Prather

The relative quantity of cyclin B1 was determined during the development of in vitro and in vivo derived porcine 4-cell embryos by western blotting and immunolocalised during the 4-cell stage. After cleavage to the 4-cell stage cyclin B1 localised to the cytoplasm at the 5, 10, 18 and 25 time points and localised to the nucleus 33 h post 4-cell cleavage (P4CC). The relative abundance of cyclin B1 was not significantly different in in vivo or in vitro derived 4-cell stage embryos cultured in the absence of the RNA polymerase inhibitor α-amanitin. Cyclin B1 protein was not detectable in embryos cultured in medium without α-amanitin for 5, 10, 18 or 25 h P4CC followed by culture in medium with α-amanitin to 33 P4CC. These results suggest that the maternal to zygotic transition of mRNA production that occurs at the 4-cell stage of the pig embryo does not result in an increase in cyclin B1 production. In addition, cyclin B1 protein levels remained constant in the absence of embryonic genome activation at the 4-cell stage.


2021 ◽  
Author(s):  
Jasmin Taubenschmid-Stowers ◽  
Maria Rostovskaya ◽  
Fatima Santos ◽  
Sebastian Ljung ◽  
Ricard Argelaguet ◽  
...  

The remodelling of the epigenome and transcriptome of the fertilised oocyte to establish totipotency in the zygote and developing embryo is one of the most critical processes in mammalian embryogenesis. Zygotic or embryonic genome activation (ZGA, EGA) in the 2-cell embryo in mouse, and the 8-cell embryo in humans, constitutes the first major wave of transcription. Failure to initiate ZGA leads to developmental defects, and contributes to the high attrition rates of human pre-implantation embryos. Due to limitations in cell numbers and experimental tractability, the mechanisms that regulate human embryonic genome activation in the totipotent embryo remain poorly understood. Here we report the discovery of human 8-cell like cells (8CLCs) specifically among naive embryonic stem cells, but not primed pluripotent cells. 8CLCs express ZGA marker genes such as ZSCAN4, LEUTX and DUXA and their transcriptome closely resembles that of the 8-cell human embryo. 8-cell like cells reactivate 8-cell stage specific transposable elements such as HERVL and MLT2A1 and are characterized by upregulation of the DNA methylation regulator DPPA3. 8CLCs show reduced SOX2 protein, and can be identified based on expression of the novel ZGA-associated protein markers TPRX1 and H3.Y in vitro. Overexpression of the transcription factor DUX4 as well as spliceosome inhibition increase ZGA-like transcription and enhance TPRX1+ 8CLCs formation. Excitingly, the in vitro identified 8CLC marker proteins TPRX1 and H3.Y are also expressed in 8-cell human embryos at the time of genome activation and may thus be relevant in vivo. The discovery of 8CLCs provides a unique opportunity to model and manipulate human ZGA-like transcriptional programs in vitro, and might provide critical functional insights into one of the earliest events in human embryogenesis in vivo.


Author(s):  
D E Goszczynski ◽  
P S Tinetti ◽  
Y H Choi ◽  
K Hinrichs ◽  
P J Ross

Abstract Embryonic genome activation is a critical event in embryo development, in which the transcriptional program of the embryo is initiated. The timing and regulation of this process are species-specific. In vitro embryo production is becoming an important clinical and research tool in the horse; however, very little is known about genome activation in this species. The objective of this work was to identify the timing of genome activation, and the transcriptional networks involved, in in vitro-produced horse embryos. RNA-Seq was performed on oocytes and embryos at eight stages of development (MII, zygote, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst; n = 6 per stage, 2 from each of 3 mares). Transcription of seven genes was initiated at the 2-cell stage. The first substantial increase in gene expression occurred at the 4-cell stage (minor activation), followed by massive gene upregulation and downregulation at the 8-cell stage (major activation). An increase in intronic nucleotides, indicative of transcription initiation, was also observed at the 4-cell stage. Co-expression network analyses identified groups of genes that appeared to be regulated by common mechanisms. Investigation of hub genes and binding motifs enriched in the promoters of co-expressed genes implicated several transcription factors. This work represents, to the best of our knowledge, the first genomic evaluation of embryonic genome activation in horse embryos.


Development ◽  
1984 ◽  
Vol 79 (1) ◽  
pp. 139-163
Author(s):  
V. N. Bolton ◽  
P. J. Oades ◽  
M. H. Johnson

The 2-cell stage of mouse embryogenesis is characterized by two phases of α-amanitin-sensitive polypeptide synthetic activity, which appear to mark the first major expression of the embryonic genome, as assessed by examination of in vitro translates of mRNA. Using populations of embryos synchronized to the first cleavage division, we have established that DNA replication takes place over the period 1 to 5·5 h after the first cleavage division; the two bursts of putative transcription take place before and immediately after DNA replication, and the translation products are detectable in each case within 3–4 h. In addition, we have shown that suppression of cytokinesis and the second round of DNA replication does not affect synthesis of the α-amanitin-sensitive polypeptides, and that neither DNA replication nor the loss of maternal mRNA that take place during the 2-cell stage are dependent upon synthesis of the α-amanitin-sensitive polypeptides.


Reproduction ◽  
2012 ◽  
Vol 144 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Tereza Toralová ◽  
Veronika Benešová ◽  
Kateřina Vodičková Kepková ◽  
Petr Vodička ◽  
Andrej Šušor ◽  
...  

This study was conducted to investigate the effect of silencing nucleophosmin in the development of in vitro-produced bovine embryos. Nucleophosmin is an abundant multifunctional nucleolar phosphoprotein that participates, for example, in ribosome biogenesis or centrosome duplication control. We showed that although the transcription of embryonic nucleophosmin started already at late eight-cell stage, maternal protein was stored throughout the whole preimplantation development and was sufficient for the progression to the blastocyst stage. At the beginning of embryogenesis, translation occurs on maternally derived ribosomes, the functionally active nucleoli emerge during the fourth cell cycle in bovines. We found that nucleophosmin localisation reflected the nucleolar formation during bovine preimplantation development. The protein was detectable from the beginning of embryonic development. Before embryonic genome activation, it was dispersed throughout the nucleoplasm. The typical nucleolar localisation emerged with the formation of active nucleoli. At the blastocyst stage, nucleophosmin tended to localise especially to the trophectoderm. To see for how long is maternal nucleophosmin preserved, we silenced the nucleophosmin mRNA using RNA interference approach. Although a large portion of nucleophosmin was degraded in embryos with silenced nucleophosmin mRNA, an amount sufficient for normal development was preserved and we detected only a temporal delay in nucleophosmin relocalisation to nucleoli. Moreover, we observed no defects in nuclear shape or cytoskeleton previously found in somatic cells and only a non-significant decrease in embryonic developmental competence. Thus, our results show that the preserved amount of maternal nucleophosmin is sufficient for preimplantation development of bovine embryo.


Sign in / Sign up

Export Citation Format

Share Document