scholarly journals Conditional Cytomegalovirus Replication In Vitro and In Vivo

2005 ◽  
Vol 79 (1) ◽  
pp. 486-494 ◽  
Author(s):  
Brigitte Rupp ◽  
Zsolt Ruzsics ◽  
Torsten Sacher ◽  
Ulrich H. Koszinowski

ABSTRACT We have established a conditional gene expression system for cytomegalovirus which allows regulation of genes independently from the viral replication program. Due to the combination of all elements required for regulated expression in the same viral genome, conditional viruses can be studied in different cell lines in vitro and in the natural host in vivo. The combination of a self-sufficient tetracycline-regulated expression cassette and Flp recombinase-mediated insertion into the viral genome allowed fast construction of recombinant murine cytomegaloviruses carrying different conditional genes. The regulation of two reporter genes, the essential viral M50 gene and a dominant-negative mutant gene (m48.2) encoding the small capsid protein, was analyzed in more detail. In vitro, viral growth was regulated by the conditional expression of M50 by 3 orders of magnitude and up to a millionfold when the dominant-negative small capsid protein mutant was used. In vivo, viral growth of the dominant-negative mutant was reduced to detection limits in response to the presence of doxycycline in the organs of mice. We believe that this conditional expression system is applicable to genetic studies of large DNA viruses in general.

2000 ◽  
Vol 20 (5) ◽  
pp. 1571-1582 ◽  
Author(s):  
Shrikesh Sachdev ◽  
Sriparna Bagchi ◽  
Donna D. Zhang ◽  
Angela C. Mings ◽  
Mark Hannink

ABSTRACT The inhibitor of kappa B alpha (IκBα) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IκBα. IκBα contains multiple functional domains that contribute to shuttling of IκBα between the cytoplasm and the nucleus. Nuclear import of IκBα is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IκBα is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin β. However, in contrast to classical nuclear import pathways, nuclear import of IκBα is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IκBα is mediated by an N-terminal nuclear export sequence. Nuclear export of IκBα requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IκBα is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IκBα is mediated via a CRM1-dependent pathway.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3173-3183 ◽  
Author(s):  
K.L. Kroll ◽  
E. Amaya

We have developed a simple approach for large-scale transgenesis in Xenopus laevis embryos and have used this method to identify in vivo requirements for FGF signaling during gastrulation. Plasmids are introduced into decondensed sperm nuclei in vitro using restriction enzyme-mediated integration (REMI). Transplantation of these nuclei into unfertilized eggs yields hundreds of normal, diploid embryos per day which develop to advanced stages and express integrated plasmids nonmosaically. Transgenic expression of a dominant negative mutant of the FGF receptor (XFD) after the mid-blastula stage uncouples mesoderm induction, which is normal, from maintenance of mesodermal markers, which is lost during gastrulation. By contrast, embryos expressing XFD contain well-patterned nervous systems despite a putative role for FGF in neural induction.


2004 ◽  
Vol 24 (15) ◽  
pp. 6861-6870 ◽  
Author(s):  
Mauro Costa-Mattioli ◽  
Yuri Svitkin ◽  
Nahum Sonenberg

ABSTRACT Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5′ untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 901-909 ◽  
Author(s):  
E. Levine ◽  
C.H. Lee ◽  
C. Kintner ◽  
B.M. Gumbiner

E-cadherin function was disrupted in vivo in developing Xenopus laevis embryos through the expression of a mutant E-cadherin protein lacking its cytoplasmic tail. This truncated form of E-cadherin was designed to act as a dominant negative mutant by competing with the extracellular interactions of wild-type endogenous E-cadherin. Expression of truncated E-cadherin in the early embryo causes lesions to develop in the ectoderm during gastrulation. In contrast, expression of a similarly truncated N-cadherin protein failed to cause the lesions. The ectodermal defect caused by the truncated E-cadherin is rescued by overexpression of wild-type E-cadherin, by co-injection of full-length E-cadherin RNA along with the RNA for the truncated form. Overexpression of full-length C-cadherin, however, is unable to compensate for the disruption of E-cadherin function and can actually cause similar ectodermal lesions when injected alone, suggesting that there is a specific requirement for E-cadherin. Therefore, E-cadherin seems to be specifically required for maintaining the integrity of the ectoderm during epiboly in the gastrulating Xenopus embryo. Differential cadherin expression reflects, therefore, the requirement for distinct adhesive properties during different morphogenetic cell behaviors.


2009 ◽  
Vol 83 (10) ◽  
pp. 5014-5027 ◽  
Author(s):  
Nathalie Faumont ◽  
Stéphanie Durand-Panteix ◽  
Martin Schlee ◽  
Sebastian Grömminger ◽  
Marino Schuhmacher ◽  
...  

ABSTRACT The Epstein-Barr virus (EBV) latency III program imposed by EBNA2 and LMP1 is directly responsible for immortalization of B cells in vitro and is thought to mediate most immunodeficiency-related posttransplant lymphoproliferative diseases in vivo. To answer the question whether and how this proliferation program is related to c-Myc, we have established the transcriptome of both c-Myc and EBV latency III proliferation programs using a Lymphochip specialized microarray. In addition to EBV-positive latency I Burkitt lymphoma lines and lymphoblastoid cell lines (LCLs), we used an LCL expressing an estrogen-regulatable EBNA2 fusion protein (EREB2-5) and derivative B-cell lines expressing a constitutively active or tetracycline-regulatable c-myc gene. A total of 897 genes were found to be fourfold or more up- or downregulated in either one or both proliferation programs compared to the expression profile of resting EREB2-5 cells. A total of 661 (74%) of these were regulated similarly in both programs. Numerous repressed genes were known targets of STAT1, and most induced genes were known to be upregulated by c-Myc and to be involved in cell proliferation. In keeping with the gene expression patterns, inactivation of c-Myc by a chemical inhibitor or by conditional expression of dominant-negative c-Myc and Max mutants led to proliferation arrest of LCLs. Most genes differently regulated in both proliferation programs corresponded to genes induced by NF-κB in LCLs, and many of them coded for immunoregulatory and/or antiapoptotic molecules. Thus, c-Myc and NF-κB are the two main transcription factors responsible for the phenotype, growth pattern, and biological properties of cells driven into proliferation by EBV.


2001 ◽  
Vol 114 (14) ◽  
pp. 2577-2590 ◽  
Author(s):  
O. Anthony Vaughan ◽  
Mauricio Alvarez-Reyes ◽  
Joanna M. Bridger ◽  
Jos L. V. Broers ◽  
Frans C. S. Ramaekers ◽  
...  

Physical interactions between lamins and emerin were investigated by co-immunoprecipitation of in vitro translated proteins. Emerin interacted with in vitro translated lamins A, B1 and C in co-immunprecipitation reactions. Competition reactions revealed a clear preference for interactions between emerin and lamin C. Structural associations between lamins and emerin were investigated in four human cell lines displaying abnormal expression and/or localisation of lamins A and C. In each cell line absence of lamins A and C from the nuclear envelope (NE) was correlated with mis-localisation of endogenous and exogenous emerin to the ER. In two cell lines that did not express lamin A but did express lamin C, lamin C as well as emerin was mis-localised. When GFP-lamin A was expressed in SW13 cells (which normally express only very low levels of endogenous lamin A and mis-localise endogenous emerin and lamin C), all three proteins became associated with the NE. When GFP-lamin C was expressed in SW13 cells neither the endogenous nor the exogenous lamin C was localised to the NE and emerin remained in the ER. Finally, lamins A and C were selectively eliminated from the NE of HeLa cells using a dominant negative mutant of lamin B1. Elimination of these lamins from the lamina led to the accumulation of emerin as aggregates within the ER. Our data suggest that lamin A is essential for anchorage of emerin to the inner nuclear membrane and of lamin C to the lamina.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Guo ◽  
Xingyuan Ma ◽  
Yunhui Fu ◽  
Chang Liu ◽  
Qiuli Liu ◽  
...  

Survivin as a member of the inhibitor of apoptosis proteins (IAPs) family is undetectable in normal cells, but highly expressed in cancer cells and cancer stem cells (CSCs) which makes it an attractive target in cancer therapy. Survivin dominant negative mutants have been reported as competitive inhibitors of endogenous survivin protein in cancer cells. However, there is a lack of systematic comparative studies on which mutants have stronger effect on promoting apoptosis in cancer cells, which will hinder the development of novel anti-cancer drugs. Here, based on the previous study of survivin and its analysis of the relationship between structure and function, we designed and constructed a series of different amino acid mutants from survivin (TmSm34, TmSm48, TmSm84, TmSm34/48, TmSm34/84, and TmSm34/48/84) fused cell-permeable peptide TATm at the N-terminus, and a dominant negative mutant TmSm34/84 with stronger pro-apoptotic activity was selected and evaluated systematically in vitro. The double-site mutant of survivin (TmSm34/84) showed more robust pro-apoptotic activity against A549 cells than others, and could reverse the resistance of A549 CSCs to adriamycin (ADM) (reversal index up to 7.01) by decreasing the expression levels of survivin, P-gp, and Bcl-2 while increasing cleaved caspase-3 in CSCs. This study indicated the selected survivin dominant negative mutant TmSm34/84 is promising to be an excellent candidate for recombinant anti-cancer protein by promoting apoptosis of cancer cells and their stem cells and sensitizing chemotherapeutic drugs.


2000 ◽  
Vol 20 (24) ◽  
pp. 9294-9306 ◽  
Author(s):  
Swati Gupta ◽  
Rina Plattner ◽  
Channing J. Der ◽  
Eric J. Stanbridge

ABSTRACT Activation of multiple signaling pathways is required to trigger the full spectrum of in vitro and in vivo phenotypic traits associated with neoplastic transformation by oncogenic Ras. To determine which of these pathways are important for N-ras tumorigenesis in human cancer cells and also to investigate the possibility of cross talk among the pathways, we have utilized a human fibrosarcoma cell line (HT1080), which contains an endogenous mutated allele of the N-rasgene, and its derivative (MCH603c8), which lacks the mutant N-ras allele. We have stably transfected MCH603c8 and HT1080 cells with activating or dominant-negative mutant cDNAs, respectively, of various components of the Raf, Rac, and RhoA pathways. In previous studies with these cell lines we showed that loss of mutant Ras function results in dramatic changes in the in vitro phenotypic traits and conversion to a weakly tumorigenic phenotype in vivo. We report here that only overexpression of activated MEK contributed significantly to the conversion of MCH603c8 cells to an aggressive tumorigenic phenotype. Furthermore, we have demonstrated that blocking the constitutive activation of the Raf-MEK, Rac, or RhoA pathway alone is not sufficient to block the aggressive tumorigenic phenotype of HT1080, despite affecting a number of in vitro-transformed phenotypic traits. We have also demonstrated the possibility of bidirectional cross talk between the Raf-MEK-ERK pathway and the Rac-JNK or RhoA pathway. Finally, overexpression of activated MEK in MCH603c8 cells appears to result in the activation of an as-yet-unidentified target(s) that is critical for the aggressive tumorigenic phenotype.


Sign in / Sign up

Export Citation Format

Share Document