IGF-I, insulin and FGFs induce outgrowth of the limb buds of amelic mutant chick embryos

Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1323-1330 ◽  
Author(s):  
C.N. Dealy ◽  
R.A. Kosher

IGF-I, insulin, FGF-2 and FGF-4 have been implicated in the reciprocal interactions between the apical ectodermal ridge (AER) and underlying mesoderm required for outgrowth and patterning of the developing limb. To study further the roles of these growth factors in limb outgrowth, we have examined their effects on the in vitro morphogenesis of limb buds of the amelic mutant chick embryos wingless (wl) and limbless (ll). Limb buds of wl and ll mutant embryos form at the proper time in development, but fail to undergo further outgrowth and subsequently degenerate. Wl and ll limb buds lack thickened AERs capable of promoting limb outgrowth, and their thin apical ectoderms fail to express the homeobox-containing gene Msx-2, which is highly expressed by normal AERs and has been implicated in regulating AER activity. Here we report that exogenous IGF-I and insulin, and, to a lesser extent, FGF-2 and FGF-4 induce the proliferation and directed outgrowth of explanted wl and ll mutant limb buds, which in vitro, like in vivo, normally fail to undergo outgrowth and degenerate. IGF-I and insulin, but not FGFs, also cause the thin apical ectoderms of wl and ll limb buds to thicken and form structures that grossly resemble normal AERs and, moreover, induce high level expression of Msx-2 in these thickened AER-like structures. Neither IGF-I, insulin nor FGFs induce expression of the homeobox-containing gene Msx-1 in the subapical mesoderm of wl or ll limb buds, although FGFs, but not IGF-I or insulin, maintain Msx-1 expression in normal (non-mutant) limb bud explants lacking an AER. The implications of these results to the relationships among the wl and ll genes, IGF-I/insulin, FGFs, Msx-2 and Msx-1 in the regulation of limb outgrowth is discussed.

Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1487-1493 ◽  
Author(s):  
C.N. Coelho ◽  
K.M. Krabbenhoft ◽  
W.B. Upholt ◽  
J.F. Fallon ◽  
R.A. Kosher

It has been suggested that the reciprocal expression of the chicken homeobox-containing genes GHox-8 and GHox-7 by the apical ectodermal ridge and subjacent limb mesoderm might be involved in regulating the proximodistal outgrowth of the developing chick limb bud. In the present study the expression of GHox-7 and GHox-8 has been examined by in situ and dot blot hybridization in the developing limb buds of limbless mutant chick embryos. The limb buds of homozygous mutant limbless embryos form at the proper time in development (stage 17/18), but never develop an apical ectodermal ridge, fail to undergo normal elongation, and eventually degenerate. At stage 18, which is shortly following the formation of the limb bud, the expression of GHox-7 is considerably reduced (about 3-fold lower) in the mesoderm of limbless mutant limb buds compared to normal limb bud mesoderm. By stages 20 and 21, as the limb buds of limbless embryos cease outgrowth, GHox-7 expression in limbless mesoderm declines to very low levels, whereas GHox-7 expression increases in the mesoderm of normal limb buds which are undergoing outgrowth. In contrast to GHox-7, expression of GHox-8 in limbless mesoderm at stage 18 is quantitatively similar to its expression in normal limb bud mesoderm, and in limbless and normal mesoderm GHox-8 expression is highly localized in the anterior mesoderm of the limb bud. In normal limb buds, GHox-8 is also expressed in high amounts by the apical ectodermal ridge.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


Oncogene ◽  
2021 ◽  
Author(s):  
Jhih-Kai Pan ◽  
Cheng-Han Lin ◽  
Yao-Lung Kuo ◽  
Luo-Ping Ger ◽  
Hui-Chuan Cheng ◽  
...  

AbstractBrian metastasis, which is diagnosed in 30% of triple-negative breast cancer (TNBC) patients with metastasis, causes poor survival outcomes. Growing evidence has characterized miRNAs involving in breast cancer brain metastasis; however, currently, there is a lack of prognostic plasma-based indicator for brain metastasis. In this study, high level of miR-211 can act as brain metastatic prognostic marker in vivo. High miR-211 drives early and specific brain colonization through enhancing trans-blood–brain barrier (BBB) migration, BBB adherence, and stemness properties of tumor cells and causes poor survival in vivo. SOX11 and NGN2 are the downstream targets of miR-211 and negatively regulate miR-211-mediated TNBC brain metastasis in vitro and in vivo. Most importantly, high miR-211 is correlated with poor survival and brain metastasis in TNBC patients. Our findings suggest that miR-211 may be used as an indicator for TNBC brain metastasis.


Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study. Results We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K. Conclusion LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


2006 ◽  
Vol 50 (6) ◽  
pp. 2231-2233 ◽  
Author(s):  
Xing-Quan Zhang ◽  
Meredith Sorensen ◽  
Michael Fung ◽  
Robert T. Schooley

ABSTRACT Recently, antiretroviral agents directed at several steps involved in viral entry have been shown to reduce viral replication in vitro and in vivo. We have demonstrated a high level of in vitro synergistic antiretroviral activity for two entry inhibitors that are directed at sequential steps in the entry process.


2010 ◽  
Vol 24 (3) ◽  
pp. 632-643 ◽  
Author(s):  
Edward Arvisais ◽  
Xiaoying Hou ◽  
Todd A. Wyatt ◽  
Koumei Shirasuna ◽  
Heinrich Bollwein ◽  
...  

Abstract Little is known about the early intracellular events that contribute to corpus luteum regression. Experiments were designed to determine the effects of prostaglandin F2α (PGF2α) on phosphatidylinositol-3-kinase (PI3K)/Akt signaling in the corpus luteum in vivo and in vitro. Treatment of midluteal-phase cows with a luteolytic dose of PGF2α resulted in a rapid increase in ERK and mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K1) signaling and a rapid suppression of Akt phosphorylation in luteal tissue. In vitro treatment of primary cultures of luteal cells with PGF2α also resulted in an increase in ERK and mTOR/p70S6K1 signaling and a diminished capacity of IGF-I to stimulate PI3K, Akt, and protein kinase C ζ activation. Accounting for the reductions in PI3K and Akt activation observed in response to PGF2α treatment, we found that PGF2α promoted the phosphorylation of serine residues (307, 612, 636) in the insulin receptor substrate 1 (IRS1) peptide sequence in vivo and in vitro. Serine phosphorylation of IRS1 was associated with reduced formation of IGF-I-stimulated IRS1/PI3Kp85 complexes. Furthermore, treatment with inhibitors of the MAPK kinase 1/ERK or mTOR/p70S6K1 signaling pathways prevented PGF2α-induced serine phosphorylation of IRS1 and abrogated the inhibitory actions of PGF2α on Akt activation. Taken together, these experiments provide compelling evidence that PGF2α treatment stimulates IRS1 serine phosphorylation, which may contribute to a diminished capacity to respond to IGF-I. It seems likely that the rapid changes in phosphorylation events are among the early events that mediate PGF2α-induced corpus luteum regression.


In a previous communication (Strangeways and Fell, 1926) it was shown that if the undifferentiated limb-bud of the embryonic Fowl was cultivated in vitro , it underwent a considerable amount of progressive development. This capacity for independent development in vitro possessed by an isolated organ has been further investigated, and for these later experiments the writers have employed the early embryonic eye, a structure endowed with more complex potentialities than the limb-bud. As a result of these experiments it was found that the eyes of young Fowl embryos possess, in a remarkable degree, the faculty for self-differentiation in vitro and for “organotypic” growth as defined by Maximow (1925). The previous work on organotypic growth in vitro has already been briefly outlined in the writers’ earlier paper and need not be discussed here. The expenses connected with the experiments described in this communication were met by the Medical Research Council, to whom the writers desire to express their thanks.


2013 ◽  
Vol 44 (5) ◽  
pp. 361-369 ◽  
Author(s):  
Roy J. Kim ◽  
Sumit Vaghani ◽  
Larisa M. Zifchak ◽  
Joseph H. Quinn ◽  
Weimian He ◽  
...  

1996 ◽  
Vol 44 (2) ◽  
pp. 91-101 ◽  
Author(s):  
A K Berfield ◽  
G J Raugi ◽  
C K Abrass

Mesangial cells (MCs) grown without supplemental insulin (SI-MCs) express a quiescent phenotype and extracellular matrix (ECM) composition similar to MCs in vivo. In contrast, MCs routinely propagated in insulin (SI+MCs) are stimulated to proliferate, change their phenotype, and produce large amounts of collagens I and III. These effects of insulin may in part be mediated through cytoskeletal rearrangement. Differences in cytoskeletal arrangement were compared between SI-MCs and SI+MCs and 1 hr after addition of insulin (1 nM) or IGF-1 (100 nM) to SI-MCs. Cells were examined by light microscopy, electron microscopy, and immunostaining for specific cytoskeletal proteins and fibronectin. Insulin induced rapid rearrangement of stress fibers. Surface ruffling, actin aggregation, vimentin retraction, rearrangement of vinculin in focal adhesions, and fibronectin extraction were apparent. These direct effects of insulin on the SI-MC cytoskeleton occurred before insulin-induced changes in ECM composition. IGF-I induced cytoskeletal reorganization distinct from insulin. These observations demonstrate that insulin and IGF-I have unique effects on the MC cytoskeleton, which is turn may mediate secondary ligand effects on MCs.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 199-206 ◽  
Author(s):  
A. Vogel ◽  
C. Tickle

The polarizing region is a major signalling tissue involved in patterning the tissues of the vertebrate limb. The polarizing region is located at the posterior margin of the limb bud and can be recognized by its ability to induce additional digits when grafted to the anterior margin of a chick limb bud. The signal from the polarizing region operates at the tip of the bud in the progress zone, a zone of undifferentiated mesenchymal cells, maintained by interactions with the apical ectodermal ridge. A number of observations have pointed to a link between the apical ectodermal ridge and signalling by the polarizing region. To test this possibility, we removed the posterior apical ectodermal ridge of chick wing buds and assayed posterior mesenchyme for polarizing activity. When the apical ectodermal ridge is removed, there is a marked decrease in polarizing activity of posterior cells. The posterior apical ectodermal ridge is known to express FGF-4 and we show that the decrease in polarizing activity of posterior cells of wing buds that normally follows ridge removal can be prevented by implanting a FGF-4-soaked bead. Furthermore, we show that both ectoderm and FGF-4 maintain polarizing activity of limb bud cells in culture.


Sign in / Sign up

Export Citation Format

Share Document