Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile

Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2903-2910 ◽  
Author(s):  
T. Rankin ◽  
M. Familari ◽  
E. Lee ◽  
A. Ginsberg ◽  
N. Dwyer ◽  
...  

Mammalian oocytes synthesize and secrete a zona pellucida that surrounds the growing oocytes, ovulated eggs and preimplantation embryos. The extracellular zona matrix is composed of three glycoproteins (ZP1, ZP2, ZP3) that are involved in folliculogenesis, species-specific fertilization, and passage of the early embryo down the oviduct. We have established a mouse line in which Zp3 has been inactivated by homologous recombination with an insertional mutation. Neither Zp3 transcripts nor ZP3 protein was detected in female mice homozygous for the mutation (Zp3−/−), whereas both ZP1 and ZP2 were present in mutant oocytes. Homozygous mutant Zp3−/− mice had follicles with germinal-vesicle-intact oocytes but that lacked a zona pellucida matrix and had a disorganized corona radiata. Although mutant oocytes underwent germinal vesicle breakdown (GVBD) prior to ovulation, the cumulus-oocyte complex was markedly disrupted and the oocytes were often separate from the cumulus cells. After hormone-induced ovulation, cumulus masses were present in the oviducts of homozygous mutant mice, but zona-free eggs were observed in only half of the females and, in these, less than 10% of the normal number [correction of mumber] of eggs were detected. No zona-free 2-cell embryos were recovered from homozygous mutant Zp3−/− female mice after mating with males proven to be fertile, and none became visibly pregnant or produced offspring. These results demonstrate that a genetic defect in a zona pellucida gene causes infertility and, given the conserved nature of the zona pellucida, a similar phenotype is expected in other mammals.

Zygote ◽  
2003 ◽  
Vol 11 (4) ◽  
pp. 293-297 ◽  
Author(s):  
Y.J.R. Ménézo ◽  
S. El Mouatassim ◽  
M. Chavrier ◽  
E.J. Servy ◽  
B. Nicolet

Human genetic expression of growth hormone receptor (GHR) gene was qualitatively analysed using reverse transcription polymerase chain reaction (RT-PCR) in cumulus cells, immature germinal vesicle (GV) and mature metaphase II (MII) stage oocytes and preimplantation human embryos. The transcripts encoding GHR were detected in cumulus cells and also in naked oocytes, either mature or not. In this case, a nested PCR is needed, as for early embryo preimplantation stages, before genomic activation. The GHR gene is highly expressed from the 4-day morula onwards. This suggests that GHR transcription follows a classical scheme associated with genomic activation. It is probable that, in human, growth hormone plays a role in the final stages of oocyte maturation and early embryogenesis as it does for several other mammalian species.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 743-753 ◽  
Author(s):  
J.E. Collins ◽  
J.E. Lorimer ◽  
D.R. Garrod ◽  
S.C. Pidsley ◽  
R.S. Buxton ◽  
...  

The molecular mechanisms regulating the biogenesis of the first desmosomes to form during mouse embryogenesis have been studied. A sensitive modification of a reverse transcriptase-cDNA amplification procedure has been used to detect transcripts of the desmosomal adhesive cadherin, desmocollin. Sequencing of cDNA amplification products confirmed that two splice variants, a and b, of the DSC2 gene are transcribed coordinately. Transcripts were identified in unfertilized eggs and cumulus cells and in cleavage stages up to the early 8-cell stage, were never detected in compact 8-cell embryos, but were evident again either from the 16-cell morula or very early blastocyst (approx 32-cells) stages onwards. These two phases of transcript detection indicate DSC2 is encoded by maternal and embryonic genomes. Previously, we have shown that desmocollin protein synthesis is undetectable in eggs and cleavage stages but initiates at the early blastocyst stage when desmocollin localises at, and appears to regulate assembly of, nascent desmosomes that form in the trophectoderm but not in the inner cell mass (Fleming, T. P., Garrod, D. R. and Elsmore, A. J. (1991), Development 112, 527–539). Maternal DSC2 mRNA is therefore not translated and presumably is inherited by blastomeres before complete degradation. Our results suggest, however, that initiation of embryonic DSC2 transcription regulates desmocollin protein expression and thereby desmosome formation. Moreover, data from blastocyst single cell analyses suggest that embryonic DSC2 transcription is specific to the trophectoderm lineage. Inhibition of E-cadherin-mediated cell-cell adhesion did not influence the timing of DSC2 embryonic transcription and protein expression. However, isolation and culture of inner cell masses induced an increase in the amount of DSC2 mRNA and protein detected. Taken together, these results suggest that the presence of a contact-free cell surface activates DSC2 transcription in the mouse early embryo.


2006 ◽  
Vol 18 (2) ◽  
pp. 270
Author(s):  
C. Hanna ◽  
C. Long ◽  
M. Westhusin ◽  
D. Kraemer

The objectives of this study were to determine whether the percentage of canine oocytes that resume meiosis during in vitro maturation could be increased by either increasing culture duration or by removing approximately one-half of the cumulus cells 24 h after oocytes were placed into culture. Canine female reproductive tracts were collected from a local clinic and ovaries were minced in warm TL-HEPES. Oocytes with a consistently dark ooplasm and at least two layers of cumulus cells were selected, cultured in a basic canine oocyte in vitro maturation medium consisting of TCM-199 with Earl's salts, 2.92 mM Ca-lactate, 20 mM pyruvic acid, 4.43 mM HEPES, 10% fetal calf serum, 1% Penicillin/Streptomycin (GibcoBRL, Grand Island, NY, USA), and 5 μg/mL porcine somatotropin, and incubated at 38.5°C in 5% CO2 in humidified air. Treatment groups were randomly assigned and oocytes were cultured for 60, 84, or 132 h (Basic). From each of these groups, one-half of the oocytes were pipetted through a fine bore pipette to partially remove the cumulus cells 24 h after the start of culture (Basic–1/2). At the end of culture, all oocytes were denuded and the nuclear status was observed with Hoechst 33342 under ultraviolet fluorescence. All data were analyzed by ANOVA with P < 0.05. Since the canine oocyte is ovulated at the germinal vesicle (GV) stage of meiosis and requires up to five days to mature in the oviduct, it was hypothesized that an increased culture time would allow for more oocytes to undergo nuclear maturation to metaphase II (MII). It was also hypothesized that partial removal of cumulus cells would decrease the cumulus cell component in the ooplasm that sustains meiotic arrest, allowing for more oocytes to resume meiosis (RM = germinal vesicle breakdown to MII). Results within each treatment group indicate that there is no significant difference between culture duration and the percent of oocytes that mature to MII. Additionally, there was no significance in the percent of oocytes that resumed meiosis after partial cumulus cell removal. Taken together, these data suggest that neither treatment is effective in canine in vitro maturation systems, given the current maturation culture conditions. Table 1. Nuclear status* of oocytes for three time periods with or without partial cumulus cell removal


Zygote ◽  
2003 ◽  
Vol 11 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Jaroslav Kalous ◽  
Michal Kubelka ◽  
Jan Motlík

The effect of the p42/44 mitogen-activated kinase (MAPK) inhibitor, PD98059, on MAPK activation and meiosis resumption in mouse oocytes was studied. When germinal vesicle (GV)-stage denuded oocytes (DOs) were cultured continuously in 50 μM PD98059, germinal vesicle breakdown (GVBD) was postponed for 2-3 h. MAPK phosphorylation and activation was delayed as well. However, PD98059 did not impair histone H1 kinase activation. After 14 h of culture there was no significant difference in the rate of DOs reaching metaphase II (MII) arrest in either control or experimental conditions. The effect of PD98059 on MAPK inhibition was further tested in epidermal growth factor (EGF)-treated oocyte–cumulus complexes (OCCs). Exposure of GV-stage OCCs for 5 min to EGF (10 ng/ml) induced a considerable increase in MAPK phosphorylation. After OCCs were further cultured in 50 μM PD98059 a rapid dephosphorylation of MAPK was induced. Already after 1 min of treatment the non-phosphorylated form of MAPK dominated, indicating the high effectivity of PD98059. This result indicates that short EGF/PD98059 treatment of OCCs induced MAPK phosphorylation/dephosphorylation in cumulus cells only. As only a transient delay in MAPK phosphorylation and activation was observed in PD98059-treated DOs we conclude that there is also another PD98059-nonsensitive pathway(s) leading to MAPK activation in mouse oocytes. The data obtained suggest that meiosis resumption in mouse oocytes is somehow influenced by the MEK/MAPK activation pathway.


Endocrinology ◽  
2005 ◽  
Vol 146 (10) ◽  
pp. 4437-4444 ◽  
Author(s):  
Cheng-Guang Liang ◽  
Li-Jun Huo ◽  
Zhi-Sheng Zhong ◽  
Da-Yuan Chen ◽  
Heide Schatten ◽  
...  

MAPK plays an important role during meiotic maturation in mammalian oocytes, whereas the necessity of MAPK during meiotic resumption in porcine oocytes is still controversial. Here, by applying the method of ultracentrifugation to move the opaque lipid droplets to the edge of the oocyte, therefore allowing clear visualization of porcine germinal vesicles, oocytes just before germinal vesicle breakdown (GVBD) and those that had just undergone GVBD were selected for the assay of MAPK activation. Our results showed that phosphorylation of MAPK in oocytes occurred after GVBD in all three different culture models: spontaneous maturation model, inhibition-induction maturation model, and normal maturation model. Moreover, we found that activation of MAPK in cumulus cells but not in oocytes was essential for GVBD in cumulus-enclosed oocytes. Then the cross-talk between cAMP and MAPK in cumulus cells was investigated by using cell-type-specific phosphodiesterase (PDE) isoenzyme inhibitors. Our results showed that PDE3 subtype existed in oocytes, whereas PDE4 subtype existed in cumulus cells. PDE3 inhibitor prevented meiotic resumption of oocytes, whereas PDE4 inhibitor enhanced the ability of FSH or forskolin to activate MAPK in cumulus cells. We propose that increased cAMP resulting from inhibition of PDE3 in oocytes blocks GVBD, whereas increased cAMP resulting from inhibition of PDE4 activates MAPK pathway in cumulus cells, which is essential for GVBD induction.


2005 ◽  
Vol 17 (2) ◽  
pp. 189 ◽  
Author(s):  
A. Bali Papp ◽  
T. Somfai ◽  
E. Varga ◽  
M. Marosán

The present study was performed to assess the survival of immature denuded or cumulus-covered porcine oocytes (COCs). Immature porcine oocytes were collected from 2–6 mm follicles of slaughterhouse ovaries and subjected to open pulled straw (OPS) vitrification, according to the method of Vajta et al. (1998 Mol Reprod. Dev. 51, 53–58). After vitrification, oocytes were matured in vitro for 48 h at 39°C, 5% CO2 in air. The maturation medium was TCM199 supplemented with 10% pig follicular fluid, 1.25 mM L-glutamine, 0.9 mM Na pyruvate, 150 μM cysteamine, 0.1 mg/mL streptomycin sulfate, 100 IU/mL PG penicillin g potassium, 10 IU/mL PMSG, and 25 IU/mL hCG. After IVM, to assess nuclear stage, all oocytes were fixed with acetic acid–alcohol (1:3) for at least three days and then stained with 0.1% orcein and examined under a phase-contrast microscope at 100× magnification. All data were analyzed by χ2 test (P < 0.05). Immediately after collection, all oocytes were at the germinal vesicle (GV) stage with an intact GV membrane. After vitrification, significantly fewer oocytes had normal morphology (intact plasma membrane) in the denuded and COC groups (4.7% and 8.5%, respectively) than did the denuded and COC control groups (95% and 92%, respectively). By the end of IVM, significantly fewer oocytes were surrounded by expanded cumulus after vitrification of COCs than were the COC controls (28.1% and 63.5%, respectively). After IVM, more of the COC control oocytes underwent germinal vesicle breakdown than did the denuded controls (95% and 78.2%, respectively); the rate of MII oocytes was higher for the COC controls than for the denuded controls (80% and 54.5%, respectively). After vitrification, the number of oocytes that underwent GVBD was significantly less for both the denuded and the COC groups (2.0% and 7.0%, respectively); the percentage of oocytes that reached MII was also lower (0.64% and 2.78%, respectively). Most of the vitrified oocytes had a damaged GV with disrupted membrane and cluster-like or scattered chromatin in both the denuded and the COC groups (96.4% and 90.7%, respectively). These data suggest that vitrification of cumulus-enclosed immature porcine oocytes is preferable compared to vitrification of denuded ones. Loss of cumulus cells compromises competence of oocytes to resume meiosis, which might result in a lower maturation rate after IVM. This research was supported by the grants of the Hungarian Scientific Research Fund (T 031758), the Hungarian National Committee of the Technical Development at the Ministry of Education (00796/2003), and the Ministry of Education (OM-KMUFA; BIO-00086/2002).


2009 ◽  
Vol 21 (1) ◽  
pp. 214
Author(s):  
N. Canel ◽  
D. Salamone

Dehydroleucodine (DhL) is a sesquiterpene lactone that inhibits germinal vesicle breakdown in Bufo arenarum oocytes. Its action takes place over early stages of the cdc25 activation cascade (Bühler MI et al. 2007 Zygote 15, 183–187). The aim of this study was to evaluate the potential of DhL to induce parthenogenetic activation by observing nuclear dynamics and second polar body (2PB) extrusion of bovine oocytes, in the presence or absence of Cytochalasin B (CB), comparing these treatments with 6-Dimethylaminopurine (DMAP), an activation agent widely used. Cumulus–oocyte complexes were collected from cow ovaries obtained from a slaughterhouse. They were matured in TCM 199, supplemented with 5% FCS, 10 UI mL–1 penicillin, 10 μg mL–1 FSH, 100 μM cysteamine, 0.3 mm sodium pyruvate and 2 mm glutamine, at 39°C under 6% CO2 in air for 24 h. After removal of cumulus cells, metaphase II (MII) oocytes were selected and treated with 5 μm ionomycin (Io) for 4 min. Afterwards, oocytes were randomly allocated into one of the following treatments: a) incubation with 2 mm DMAP for 3 h (DMAP); b) incubation with 5 μm DhL for 3 h (DhL); and c) incubation with 5 μm DhL and 5 μg mL–1 CB, for 3 h (DhL-CB). A control group was only treated with Io. Activated oocytes were cultured in the maturation medium during 4, 11 or 17 h (Io exposure = 0 h), stained with Hoechst 33342 and analyzed under fluorescence microscope to evaluate nuclear stage and 2PB extrusion. Activation data are presented in Table 1. Oocytes with two extruded polar bodies and a metaphase plate were considered as partially activated (PA) and those exhibiting one pronucleus (PN) or already cleaved, as fully activated (FA). Oocytes that remained arrested at MII were not included in the table. Rates of 2PB emission were 98.3, 4.9, 83.6 and 61.5% for Io, DMAP, DhL and DhL-CB, respectively. These percentages were determined over total number of activated oocytes (PA and FA) within each group, including results from all evaluation times because no differences were found between them. Nuclear evaluation suggests that DhL is as effective as DMAP to induce full activation when combined with CB, and its use does not induce the early PN formation observed with DMAP at 4 h post Io. Most of the oocytes activated with DhL extruded a 2PB; these results were statistically different from those observed for other groups. These results indicate that DhL might be a useful agent to induce parthenogenesis, allowing 2PB extrusion and avoiding early PN formation in bovine oocytes. Table 1.Partial and full activation of bovine oocytes at 4, 11 and 17 h post treatments


2004 ◽  
Vol 24 (22) ◽  
pp. 9920-9929 ◽  
Author(s):  
Shaolin Shi ◽  
Suzannah A. Williams ◽  
Antti Seppo ◽  
Henry Kurniawan ◽  
Wei Chen ◽  
...  

ABSTRACT Complex and hybrid N-glycans contain sugar residues that have been implicated in fertilization, compaction of the embryo, and implantation. Inactivation of the Mgat1 gene responsible for their synthesis is embryonic lethal, but homozygous mutant blastocysts are phenotypically normal due to the presence of maternal Mgat1 gene transcripts. To identify roles for complex and hybrid N-glycans in oogenesis and preimplantation development, the Mgat1 gene in oocytes was deleted by using a ZP3Cre recombinase transgene. All mutant oocytes had an altered zona pellucida (ZP) that was thinner than the control ZP, and they did not possess complex N-glycans but contained ZP1, ZP2, and ZP3 glycoproteins. Mutant eggs were fertilized, all embryos implanted, and heterozygotes developed to birth. However, mutant females had decreased fertility, yielded fewer eggs after stimulation with gonadotropins, and produced a reduced number of preimplantation embryos and less progeny than controls. About 25% of embryonic day 3.5 (E3.5) embryos derived from mutant eggs were severely retarded in development, even when they were heterozygous and expressed complex N-glycans. Thus, a proportion of Mgat1 − / − oocytes were developmentally compromised. Surprisingly, mutant eggs also gave rise to Mgat1 − / − embryos that developed normally, implanted, and progressed to E9.5. Therefore, complex or hybrid N-glycans are required at some stage of oogenesis for the generation of a developmentally competent oocyte, but fertilization, blastogenesis, and implantation may proceed in their absence.


Reproduction ◽  
2019 ◽  
Vol 157 (6) ◽  
pp. 501-510 ◽  
Author(s):  
Zubing Cao ◽  
Tengteng Xu ◽  
Xu Tong ◽  
Dandan Zhang ◽  
Chengxue Liu ◽  
...  

HASPIN kinase-catalyzed phosphorylation of histone H3 on threonine 3 (H3T3p) directs the activity and localization of chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC) to regulate chromosome condensation and segregation in both mitosis and meiosis. However, the function of HASPIN kinase in the meiotic maturation of porcine oocytes is not yet known. Here, we found that HASPIN mRNA is constantly expressed in porcine oocyte maturation and subsequent early embryo development. H3T3p is highly enriched on chromosomes at germinal vesicle breakdown (GVBD) stage and thereafter maintains a low level in progression through metaphase I (MI) to metaphase II (MII). Correspondingly, H3T3p was completely abolished in oocytes treated with an inhibitor of HASPIN kinase. Functionally, inhibition of HASPIN activity led to a significant reduction in the rate of oocyte meiotic maturation and the limited cumulus expansion. Additionally, HASPIN inhibition caused both spindle disorganization and chromosome misalignment in oocytes at MI and MII stage. Importantly, HASPIN inhibition severely prevented deacetylation of several highly conserved lysine (K) residues of histone H3 and H4 including H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 on the metaphase chromosomes during oocyte meiotic maturation. Taken together, these results demonstrate that HASPIN kinase regulates porcine oocyte meiotic maturation via modulating histone deacetylation.


2003 ◽  
Vol 179 (1) ◽  
pp. 25-34 ◽  
Author(s):  
M Shimada ◽  
J Ito ◽  
Y Yamashita ◽  
T Okazaki ◽  
N Isobe

In this study, we investigated the mechanisms of protein kinase B (PKB) activation and its role in cumulus cells during in vitro meiotic resumption of porcine oocytes. PKB activity in cumulus cells was significantly decreased by 12 h cultivation of cumulus-oocyte complexes (COCs) in basic medium. However, the addition of phosphodiesterase inhibitors, hypoxanthine or 3-isobutyl-1-methylxanthine, maintained the level of PKB activity in cumulus cells at comparable with that in cumulus cells just after collection from their follicles. When COCs were cultured with phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, PKB activity was significantly decreased, and both caspase 3 activity and the proportion of apoptotic cells were significantly increased as compared with those in cumulus cells just after collection from their follicles. Moreover, the inhibitory effect of hypoxanthine on spontaneous meiotic resumption was overcome by addition of LY294002. On the other hand, markedly high activity of PKB and high intensity of the phosphorylated PKB band were observed in cumulus cells of COCs which were cultured with FSH. The addition of 20 microM LY294002 to FSH-containing medium induced an apoptosis of cumulus cells, whereas little apoptotic-positive signal was detected in COCs cultured with 5 microM LY294002 and FSH. However, the inhibitory effects of LY294002 on progesterone production by cumulus cells and germinal vesicle breakdown in oocytes reached a maximum at 5 microM. Thus, high activity of the PI 3-kinase-PKB pathway in cumulus cells plays an important role in FSH regulation of cell function. Judging from these results, it is estimated that PI 3-kinase in cumulus cells is required for both the suppression of spontaneous meiotic resumption and the induction of gonadotropin-stimulated meiotic resumption.


Sign in / Sign up

Export Citation Format

Share Document