Human oocytes and preimplantation embryos express mRNA for growth hormone receptor

Zygote ◽  
2003 ◽  
Vol 11 (4) ◽  
pp. 293-297 ◽  
Author(s):  
Y.J.R. Ménézo ◽  
S. El Mouatassim ◽  
M. Chavrier ◽  
E.J. Servy ◽  
B. Nicolet

Human genetic expression of growth hormone receptor (GHR) gene was qualitatively analysed using reverse transcription polymerase chain reaction (RT-PCR) in cumulus cells, immature germinal vesicle (GV) and mature metaphase II (MII) stage oocytes and preimplantation human embryos. The transcripts encoding GHR were detected in cumulus cells and also in naked oocytes, either mature or not. In this case, a nested PCR is needed, as for early embryo preimplantation stages, before genomic activation. The GHR gene is highly expressed from the 4-day morula onwards. This suggests that GHR transcription follows a classical scheme associated with genomic activation. It is probable that, in human, growth hormone plays a role in the final stages of oocyte maturation and early embryogenesis as it does for several other mammalian species.

2018 ◽  
Vol 39 ◽  
pp. 29-33 ◽  
Author(s):  
Merlin G. Butler ◽  
Waheeda Hossain ◽  
Maaz Hassan ◽  
Ann M. Manzardo

Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2903-2910 ◽  
Author(s):  
T. Rankin ◽  
M. Familari ◽  
E. Lee ◽  
A. Ginsberg ◽  
N. Dwyer ◽  
...  

Mammalian oocytes synthesize and secrete a zona pellucida that surrounds the growing oocytes, ovulated eggs and preimplantation embryos. The extracellular zona matrix is composed of three glycoproteins (ZP1, ZP2, ZP3) that are involved in folliculogenesis, species-specific fertilization, and passage of the early embryo down the oviduct. We have established a mouse line in which Zp3 has been inactivated by homologous recombination with an insertional mutation. Neither Zp3 transcripts nor ZP3 protein was detected in female mice homozygous for the mutation (Zp3−/−), whereas both ZP1 and ZP2 were present in mutant oocytes. Homozygous mutant Zp3−/− mice had follicles with germinal-vesicle-intact oocytes but that lacked a zona pellucida matrix and had a disorganized corona radiata. Although mutant oocytes underwent germinal vesicle breakdown (GVBD) prior to ovulation, the cumulus-oocyte complex was markedly disrupted and the oocytes were often separate from the cumulus cells. After hormone-induced ovulation, cumulus masses were present in the oviducts of homozygous mutant mice, but zona-free eggs were observed in only half of the females and, in these, less than 10% of the normal number [correction of mumber] of eggs were detected. No zona-free 2-cell embryos were recovered from homozygous mutant Zp3−/− female mice after mating with males proven to be fertile, and none became visibly pregnant or produced offspring. These results demonstrate that a genetic defect in a zona pellucida gene causes infertility and, given the conserved nature of the zona pellucida, a similar phenotype is expected in other mammals.


2004 ◽  
Vol 181 (2) ◽  
pp. 281-290 ◽  
Author(s):  
J Wook Kim ◽  
RP Rhoads ◽  
SS Block ◽  
TR Overton ◽  
SJ Frank ◽  
...  

At parturition, dairy cows experience a 70% reduction in plasma IGF-I. This reduction coincides with decreased abundance of GHR1A, the liver-specific transcript of the growth hormone receptor (GHR) gene, suggesting impaired growth hormone-dependent synthesis of IGF-I. It is not immediately obvious that the periparturient reduction in GHR1A is sufficient to reduce hepatic GHR abundance. This is because approximately 50% of total GHR mRNA abundance in prepartum liver is accounted for by ubiquitously expressed transcripts which remain collectively unchanged at parturition. In addition, the possibility that parturition alters GHR expression in other growth hormone target tissue has not been examined. To address these questions, we measured GHR gene expression and GHR protein in liver and skeletal muscle of four dairy cows on days -35,+3 and+56 (relative to parturition on day 0). Hepatic GHR abundance and GHR1A transcripts were lower on day+3 than on day -35 and returned to late pregnancy value by day+56. Additional studies in two other groups of cows indicated that the hepatic levels of the GHR protein recovered substantially within 10 days after parturition. These changes occurred without variation in the abundance of HNF4, a liver-enriched transcription factor activating the promoter responsible for GHR1A synthesis. In contrast to liver, levels of GHR gene expression and GHR protein were identical on days -35,+3 and+56 in skeletal muscle. These data suggest a role for the GHR in regulating tissue-specific changes in growth hormone responsiveness in periparturient dairy cows.


2015 ◽  
Vol 27 (1) ◽  
pp. 269 ◽  
Author(s):  
M. Kurome ◽  
M. Dahlhoff ◽  
S. Bultmann ◽  
S. Krebs ◽  
H. Blum ◽  
...  

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) technology is considered as an efficient strategy for generating gene edited large animals, such as pigs. Compared to somatic cell nuclear transfer, this new technology offers a relatively simple way to generate mutant pigs by direct injection of RNA into the cytoplasm of zygotes. Moreover, the use of in vitro produced zygotes would provide a highly effective and practical method for the production of porcine disease models for biomedical research. Here we examined the production efficiency of growth hormone receptor (GHR) mutant pigs by the combination of the CRISPR/Cas system and in vitro produced zygotes. In vitro maturation (IVM) of oocytes was performed as described previously (Kurome et al., Meth. Mol. Biol., in press). In all experiments, the same batch of frozen sperm was used. After IVM, around 20 oocytes with expanded cumulus cells were incubated with 5 × 104 spermatozoa in a 100-μL drop of porcine fertilization medium for 7 h. In vitro-produced embryos were assessed by the ratio of normal fertilization (eggs with 2 pronuclei) and blastocyst formation at Day 7. The Cas9 mRNA and a single guide RNA, recognising a short sequence of 20 base pairs in exon 3 of the GHR gene, were injected directly into the cytoplasm of the embryos 8.5 to 9.5 h after IVF. Injected embryos were transferred laparoscopically to recipient pigs, and 86.4% (57/66) of sperm-penetrated oocytes (66/96) exhibited normal fertilization. Incidence of polyspermy was relatively low (9/66, 13.6%). Developmental ability of in vitro-produced embryos to the blastocyst stage was 17.4% (24/138). In total, 426 RNA-injected embryos were transferred into 2 recipients, one of which became pregnant and gave birth to 8 piglets. All piglets were clinically healthy and developed normally. In 3 out of 8 piglets (37.5%), mutations were introduced. Next-generation sequencing revealed that all of them were mosaics: one with a single mutation (22% wild-type/78% mutant) and 2 piglets with 2 different mutations (80% wild-type/2% mutant_1/18% mutant_2 and 94% wild-type/4% mutant_1/2% mutant_2). Four out of 5 mutations caused a frameshift in the GHR gene. Our study reports for the first time generation of GHR mutant pigs by the use of the CRISPR/Cas system in in vitro-produced zygotes. Because all GHR mutant offspring were mosaic, Cas9 activation probably occurred after the 1-cell stage under our experimental conditions. The founder animal with the highest proportion of mutant GHR alleles will be used for breeding to establish a large animal model for Laron syndrome.This work is supported by the German Research Council (TR-CRC 127).


1999 ◽  
Vol 23 (1) ◽  
pp. 67-75 ◽  
Author(s):  
G Zogopoulos ◽  
P Nathanielsz ◽  
GN Hendy ◽  
CG Goodyer

In subprimates, significant onset of growth hormone receptor (GHR) expression occurs only after birth whereas, in the human, GHR mRNA and protein are widely manifest from the first trimester of fetal life. Thus, it is likely that subprimates are not the best models for studying regulation of human GHR gene transcription, especially during early stages in development. Here we have explored the potential of the baboon as a more appropriate model. Baboon GHR cDNAs were cloned from postnatal liver by reverse transcription (RT)-PCR, using human GHR-specific primers. The encoded baboon GHR precursor protein has an identical signal peptide sequence to that of human and rhesus monkey GHRs, and the mature baboon GHR is also 620 amino acids long, with 95% and 98.5% amino acid identity to the human and rhesus monkey receptors respectively. Previous studies in the human have identified eight 5' untranslated region (5' UTR) variants of the GHR mRNA (V1 to V8, numbered according to their relative abundance). We cloned the baboon V1, V3 and V4 homologues by RT-PCR: these variants have a high degree (>92%) of sequence identity with their human counterparts and also diverge at an identical point, 12 nucleotides upstream of the start of translation. The expression pattern of these three GHR mRNA isoforms in baboon liver during development was characterized. Strong expression of baboon V1 and V4 was evident by 49 days of postnatal life (n=5, 49 days and adult (18.6-19.6 kg)); very low levels of V1, but not V4, were observed in younger animals (n=2, 6 and 30 days). In contrast, V3 5' UTR variant mRNA was present in all fetal (n=4, 141-155 days gestation) and postnatal (n=7, 6-19.6 days and adult (18.6 kg)) hepatic specimens examined. Analysis of postnatal kidney and lung (n=2, 19 and 19.6 kg) revealed that V3 transcripts are present in these tissues, but not V1 and V4. Together, these data demonstrate that, as in the human, baboon V1 and V4 expression is developmentally regulated and tissue specific, while the V3 isoform is more widely expressed. Therefore, it is likely that the regulatory regions of the baboon and human GHR genes are well conserved. Our findings suggest that the baboon is an appropriate animal model in which to define the mechanisms regulating GHR gene transcription during primate development.


1996 ◽  
Vol 134 (5) ◽  
pp. 560-562 ◽  
Author(s):  
Seiko Chujo ◽  
Hidesuke Kaji ◽  
Yutaka Takahashi ◽  
Yasuhiko Okimura ◽  
Hiromi Abe ◽  
...  

Chujo S. Kaji H, Takahashi Y. Okimura Y, Abe H, Chihara K. No correlation of growth hormone receptor gene mutation P561T with body height. Eur J Endocrinol 1996;134:560–2. ISSN 0804–4643 Analysis of the growth hormone receptor (GHR) gene in GH insensitivity syndrome revealed various mutations, mainly in the gene encoding the extracellular domain of GHR. On the other hand, the mutation of the gene encoding the cytoplasmic domain of GHR was not found. We have reported, in the cytoplasmic domain of a GHR gene, mutation P561T in a patient with Noonan syndrome who showed a blunted insulin-like growth factor I (IGF-I) response to an acute injection of GH. However, her mother possessing the same mutation had no growth failure. To clarify the significance of the GHR gene mutation P561T, 96 volunteers (41 males aged 21–80 years; 55 females, aged 20–80 years) were tested for the presence of this mutation. By the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, three of the 41 males and 11 of the 55 females examined revealed heterozygous missense mutation P561T, The body height (cm) was 168 ±5.3 (mean ± sd) in three males with the mutation and 164.1 ± 5.8 in 38 males without the mutation. The difference between them was not statistically significant. The body height in 11 females with the mutation was 152.6 ± 5.4, which did not differ significantly from 151.3 ± 6.2 in 44 females without the mutation. These findings suggest that the heterozygous missense mutation P561T in the cytoplasmic domain of GHR does not play a significant role in determining the final body height. Hidesuke Kaji, Third Division, Department of Medicine, Kobe University School of Medicine. 7-5-1. Kusunokicho, Chuo-ku, Kobe 650, Japan


Sign in / Sign up

Export Citation Format

Share Document