scholarly journals The regulated elimination of transit-amplifying cells preserves tissue homeostasis during protein starvation in Drosophila testis

Development ◽  
2015 ◽  
Vol 142 (10) ◽  
pp. 1756-1766 ◽  
Author(s):  
H. Yang ◽  
Y. M. Yamashita
2021 ◽  
Author(s):  
Lauren Anllo ◽  
Stephen DiNardo

SummaryTissue homeostasis often requires a properly placed niche to support stem cells. The morphogenetic processes that position a niche are just being described. We recently showed that Drosophila testis pro niche cells, specified at disparate positions during early gonadogenesis, must assemble in one collective at the gonad anterior. Here, we identify Slit and FGF signals emanating from adjacent visceral mesoderm (Vm) that regulate assembly. In response to signaling, niche cells express islet, which we find is also required for positioning the niche. Without signaling, niche cells specified furthest from the anterior are unable to migrate, remaining dispersed. Function of the dispersed niche is severely disrupted, with pro-niche cells evading cell cycle quiescence, compromised in their ability to signal the incipient stem cell pool, and failing to orient stem cell divisions properly. Our work identifies both extrinsic signaling and intrinsic responses required for proper assembly and placement of the testis niche.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 336
Author(s):  
Roberta Melchionna ◽  
Paola Trono ◽  
Annalisa Tocci ◽  
Paola Nisticò

Human tissues, to maintain their architecture and function, respond to injuries by activating intricate biochemical and physical mechanisms that regulates intercellular communication crucial in maintaining tissue homeostasis. Coordination of the communication occurs through the activity of different actin cytoskeletal regulators, physically connected to extracellular matrix through integrins, generating a platform of biochemical and biomechanical signaling that is deregulated in cancer. Among the major pathways, a controller of cellular functions is the cytokine transforming growth factor β (TGFβ), which remains a complex and central signaling network still to be interpreted and explained in cancer progression. Here, we discuss the link between actin dynamics and TGFβ signaling with the aim of exploring their aberrant interaction in cancer.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


Sign in / Sign up

Export Citation Format

Share Document