scholarly journals Actin Cytoskeleton and Regulation of TGFβ Signaling: Exploring Their Links

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 336
Author(s):  
Roberta Melchionna ◽  
Paola Trono ◽  
Annalisa Tocci ◽  
Paola Nisticò

Human tissues, to maintain their architecture and function, respond to injuries by activating intricate biochemical and physical mechanisms that regulates intercellular communication crucial in maintaining tissue homeostasis. Coordination of the communication occurs through the activity of different actin cytoskeletal regulators, physically connected to extracellular matrix through integrins, generating a platform of biochemical and biomechanical signaling that is deregulated in cancer. Among the major pathways, a controller of cellular functions is the cytokine transforming growth factor β (TGFβ), which remains a complex and central signaling network still to be interpreted and explained in cancer progression. Here, we discuss the link between actin dynamics and TGFβ signaling with the aim of exploring their aberrant interaction in cancer.

2019 ◽  
Vol 25 (6) ◽  
pp. 654-662 ◽  
Author(s):  
Lei Fang ◽  
Fengzhou Li ◽  
Chundong Gu

Various pathological processes are associated with the aberrant expression and function of cytokines, especially those belonging to the transforming growth factor-β (TGF-β) family. Nevertheless, the functions of members of the TGF-β family in cancer progression and therapy are still uncertain. Growth differentiation factor- 15, which exists in intracellular and extracellular forms, is classified as a divergent member of the TGF-β superfamily. It has been indicated that GDF-15 is also connected to the evolution of cancer both positively and negatively depending upon the cellular state and environment. Under normal physiological conditions, GDF-15 inhibits early tumour promotion. However, its abnormal expression in advanced cancers causes proliferation, invasion, metastasis, cancer stem cell formation, immune escape and a reduced response to therapy. As a clinical indicator, GDF-15 can be used as a tool for the diagnosis and therapy of an extensive scope of cancers. Although some basic functions of GDF-15 are noncontroversial, their mechanisms remain unclear and complicated at the molecular level. Therefore, GDF-15 needs to be further explored and reviewed.


2019 ◽  
Vol 216 (11) ◽  
pp. 2531-2545 ◽  
Author(s):  
Anne R. Albright ◽  
Juraj Kabat ◽  
Moyi Li ◽  
Fiona Raso ◽  
Andrea Reboldi ◽  
...  

B cells in germinal centers (GCs) cycle between light zone (LZ) and dark zone (DZ). The cues in the GC microenvironment that regulate the transition from LZ to DZ have not been well characterized. In Peyer’s patches (PPs), transforming growth factor-β (TGFβ) promotes IgA induction in activated B cells that can then differentiate into GC B cells. We show here that TGFβ signaling occurs in B cells in GCs and is distinct from signaling that occurs in activated B cells in PPs. Whereas in activated B cells TGFβ signaling is required for IgA induction, in the GC it was instead required for the transition from LZ to DZ. In the absence of TGFβ signaling, there was an accumulation of LZ GC B cells and reduced antibody affinity maturation likely due to reduced activation of Foxo1. This work identifies TGFβ as a microenvironmental cue that is critical for GC homeostasis and function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Boning Niu ◽  
Jie Liu ◽  
Ben Lv ◽  
Jiacheng Lin ◽  
Xin Li ◽  
...  

AbstractThe paradoxical roles of transforming growth factor-β (TGFβ) signaling and nuclear receptor Nur77 in colon cancer development are known but the underlying mechanisms remain obscure. Inhibitor of differentiation 1 (ID1) is a target gene of TGFβ and a key promoter for colon cancer progression. Here, we show that Nur77 enhances TGFβ/Smad3-induced ID1 mRNA expression through hindering Smurf2-mediated Smad3 mono-ubiquitylation, resulting in ID1 upregulation. In the absence of TGFβ, however, Nur77 destabilizes ID1 protein by promoting Smurf2-mediated ID1 poly-ubiquitylation, resulting in ID1 downregulation. Interestingly, TGFβ stabilizes ID1 protein by switching Nur77 interaction partners to inhibit ID1 ubiquitylation. This also endows TGFβ with an active pro-tumorigenic action in Smad4-deficient colon cancers. Thus, TGFβ converts Nur77’s role from destabilizing ID1 protein and cancer inhibition to inducing ID1 mRNA expression and cancer promotion, which is highly relevant to colon cancer stemness, metastasis and oxaliplatin resistance. Our data therefore define the integrated duality of Nur77 and TGFβ signaling in regulating ID1 expression and provide mechanistic insights into the paradoxical roles of TGFβ and Nur77 in colon cancer progression.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 975
Author(s):  
Kara Corps ◽  
Monica Stanwick ◽  
Juliann Rectenwald ◽  
Andrew Kruggel ◽  
Sarah B. Peters

Transforming growth factor β (TGFβ) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFβ receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Zhang ◽  
Yongjun Zheng ◽  
Jimmy Lee ◽  
Jieyu Hua ◽  
Shilong Li ◽  
...  

AbstractEffective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair.


Author(s):  
Yiping Hu ◽  
Juan He ◽  
Lianhua He ◽  
Bihua Xu ◽  
Qingwen Wang

AbstractTransforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.


Oncogene ◽  
2021 ◽  
Author(s):  
Panagiotis Papoutsoglou ◽  
Dorival Mendes Rodrigues-Junior ◽  
Anita Morén ◽  
Andrew Bergman ◽  
Fredrik Pontén ◽  
...  

AbstractActivation of the transforming growth factor β (TGFβ) pathway modulates the expression of genes involved in cell growth arrest, motility, and embryogenesis. An expression screen for long noncoding RNAs indicated that TGFβ induced mir-100-let-7a-2-mir-125b-1 cluster host gene (MIR100HG) expression in diverse cancer types, thus confirming an earlier demonstration of TGFβ-mediated transcriptional induction of MIR100HG in pancreatic adenocarcinoma. MIR100HG depletion attenuated TGFβ signaling, expression of TGFβ-target genes, and TGFβ-mediated cell cycle arrest. Moreover, MIR100HG silencing inhibited both normal and cancer cell motility and enhanced the cytotoxicity of cytostatic drugs. MIR100HG overexpression had an inverse impact on TGFβ signaling responses. Screening for downstream effectors of MIR100HG identified the ligand TGFβ1. MIR100HG and TGFB1 mRNA formed ribonucleoprotein complexes with the RNA-binding protein HuR, promoting TGFβ1 cytokine secretion. In addition, TGFβ regulated let-7a-2–3p, miR-125b-5p, and miR-125b-1–3p expression, all encoded by MIR100HG intron-3. Certain intron-3 miRNAs may be involved in TGFβ/SMAD-mediated responses (let-7a-2–3p) and others (miR-100, miR-125b) in resistance to cytotoxic drugs mediated by MIR100HG. In support of a model whereby TGFβ induces MIR100HG, which then enhances TGFβ1 secretion, analysis of human carcinomas showed that MIR100HG expression correlated with expression of TGFB1 and its downstream extracellular target TGFBI. Thus, MIR100HG controls the magnitude of TGFβ signaling via TGFβ1 autoinduction and secretion in carcinomas.


2016 ◽  
Vol 44 (5) ◽  
pp. 1441-1454 ◽  
Author(s):  
Jennifer J. Huang ◽  
Gerard C. Blobe

Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.


Author(s):  
Szu-Ying Chen ◽  
Ons Mamäi ◽  
Rosemary J. Akhurst

Discovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies. Here we consider the biological activities of TGFβ action on different cells of relevance toward improving immunotherapy outcomes for patients, with a focus on the adaptive immune system. We discuss recent advances in the development of drugs that target the TGFβ signaling pathway in a tumor-specific or cell type–specific manner to improve the therapeutic window between response rates and adverse effects. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document