Limb deformity proteins: role in mesodermal induction of the apical ectodermal ridge

Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 133-139 ◽  
Author(s):  
J. Kuhlman ◽  
L. Niswander

During early limb development, distal tip ectoderm is induced by the underlying mesenchyme to form the apical ectodermal ridge. Subsequent limb growth and patterning depend on reciprocal signaling between the mesenchyme and ridge. Mice that are homozygous for mutations at the limb deformity (ld) locus do not form a proper ridge and the anteroposterior axis of the limb is shortened. Skeletal analyses reveal shortened limbs that involve loss and fusion of distal bones and digits, defects in both anteroposterior and proximodistal patterning. Using molecular markers and mouse-chick chimeras we examined the ridge-mesenchymal interactions to determine the origin of the ld patterning defects. In the ld ridge, fibroblast growth factor 8 (Fgf8) RNA is decreased and Fgf4 RNA is not detected. In the ld mesenchyme, Sonic hedgehog (Shh), Evx1 and Wnt5a expression is decreased. In chimeras between ld ectoderm and wild-type mesenchyme, a ridge of normal morphology and function is restored, Fgf8 and Shh are expressed normally, Fgf4 is induced and a normal skeletal pattern arises. These results suggest that the ld mesenchyme is unable to induce the formation of a completely functional ridge. This primary defect causes a disruption of ridge function and subsequently leads to the patterning defects observed in ld limbs. We propose a model in which ridge induction requires at least two phases: an early competence phase, which includes induction of Fgf8 expression, and a later differentiation phase in which Fgf4 is induced and a morphological ridge is formed. Ld proteins appear to act during the differentiation phase.

Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 883-894 ◽  
Author(s):  
S. Pizette ◽  
L. Niswander

The apical ectodermal ridge (AER), a transient specialized epithelium at the distal limb tip, is essential for vertebrate embryonic limb outgrowth along the proximodistal axis. Among all the molecules expressed in the AER, only the Fibroblast Growth Factors (FGFs) have been shown to substitute for its function in limb outgrowth. After specification of the skeletal progenitors is complete, the AER regresses, having fulfilled its function. However, the cellular processes underlying AER regression remain largely unclear, and the molecular ones, totally unknown. Members of the Bone Morphogenetic Protein (BMP) family are expressed in the AER throughout its life and in the mesenchyme. Our studies using misexpression of Noggin, a BMP inhibitor, reveal an unsuspected role for BMPs in the negative regulation of Fgf expression and AER function. We find that BMPs limit limb outgrowth by promoting AER regression, as BMP inhibition results in persistence of the AER, prolonged Fgf expression and excess soft-tissue growth. In addition, the Noggin misexpression studies uncover an earlier role for BMPs in repression of AER function. Noggin overexpression results in extension of the AER anteriorly and loss of AER asymmetry. We show that overall the AER becomes taller, and its anterior half becomes more similar to a normal posterior AER. In addition, Fgf4 transcripts, which are usually restricted to the posterior half of the AER, are now also expressed anteriorly. Moreover, ectopicFgf4 expression is induced independently of Sonic Hedgehog, contrary to current models of Fgf4 regulation in the limb. Our studies also provide insight into the activity of the hypothesized apical ectodermal maintenance factor (AEMF), which is thought to maintain the tall shape of the posterior part of the AER. Our work shows that the AER is negatively regulated by BMP.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1353
Author(s):  
A. Denise R. Garcia

The Sonic hedgehog (Shh) molecular signaling pathway is well established as a key regulator of neurodevelopment. It regulates diverse cellular behaviors, and its functions vary with respect to cell type, region, and developmental stage, reflecting the incredible pleiotropy of this molecular signaling pathway. Although it is best understood for its roles in development, Shh signaling persists into adulthood and is emerging as an important regulator of astrocyte function. Astrocytes play central roles in a broad array of nervous system functions, including synapse formation and function as well as coordination and orchestration of CNS inflammatory responses in pathological states. Neurons are the source of Shh in the adult, suggesting that Shh signaling mediates neuron–astrocyte communication, a novel role for this multifaceted pathway. Multiple roles for Shh signaling in astrocytes are increasingly being identified, including regulation of astrocyte identity, modulation of synaptic organization, and limitation of inflammation. This review discusses these novel roles for Shh signaling in regulating diverse astrocyte functions in the healthy brain and in pathology.


FACE ◽  
2021 ◽  
pp. 273250162110243
Author(s):  
Mikhail Pakvasa ◽  
Andrew B. Tucker ◽  
Timothy Shen ◽  
Tong-Chuan He ◽  
Russell R. Reid

Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.


2001 ◽  
Vol 236 (2) ◽  
pp. 421-435 ◽  
Author(s):  
Chin Chiang ◽  
Ying Litingtung ◽  
Matthew P. Harris ◽  
B.Kay Simandl ◽  
Yina Li ◽  
...  

1978 ◽  
Vol 72 (5) ◽  
pp. 163-169
Author(s):  
Susan Jay Spungin

Presents selected findings of a national survey of teachers of the visually handicapped to measure their attitudes toward competencies in seven areas of teaching activity: Assessment and Evaluation; Educational Instructional Strategies; Guidance and Counseling; Administration and Supervision; Media and Technology; School and Community Relations; and Research. Attitudes of the 807 responding teachers in both residential and local school programs were analyzed in two phases: Phase I compared what teachers said they do with their reactions to competencies; Phase II analyzed teacher roles (rather than titles) and compared role and function with reaction to the competencies.


Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4811-4823 ◽  
Author(s):  
J.J. Sanz-Ezquerro ◽  
C. Tickle

The polarising region expresses the signalling molecule sonic hedgehog (Shh), and is an embryonic signalling centre essential for outgrowth and patterning of the vertebrate limb. Previous work has suggested that there is a buffering mechanism that regulates polarising activity. Little is known about how the number of Shh-expressing cells is controlled but, paradoxically, the polarising region appears to overlap with the posterior necrotic zone, a region of programmed cell death. We have investigated how Shh expression and cell death respond when levels of polarising activity are altered, and show an autoregulatory effect of Shh on Shh expression and that Shh affects cell death in the posterior necrotic zone. When we increased Shh signalling, by grafting polarising region cells or applying Shh protein beads, this led to a reduction in the endogenous Shh domain and an increase in posterior cell death. In contrast, cells in other necrotic regions of the limb bud, including the interdigital areas, were rescued from death by Shh protein. Application of Shh protein to late limb buds also caused alterations in digit morphogenesis. When we reduced the number of Shh-expressing cells in the polarising region by surgery or drug-induced killing, this led to an expansion of the Shh domain and a decrease in the number of dead cells. Furthermore, direct prevention of cell death using a retroviral vector expressing Bcl2 led to an increase in Shh expression. Finally, we provide evidence that the fate of some of the Shh-expressing cells in the polarising region is to undergo apoptosis and contribute to the posterior necrotic zone during normal limb development. Taken together, these results show that there is a buffering system that regulates the number of Shh-expressing cells and thus polarising activity during limb development. They also suggest that cell death induced by Shh could be the cellular mechanism involved. Such an autoregulatory process based on cell death could represent a general way for regulating patterning signals in embryos.


Sign in / Sign up

Export Citation Format

Share Document