engrailed and polyhomeotic interactions are required to maintain the A/P boundary of the Drosophila developing wing

Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2771-2780 ◽  
Author(s):  
F. Maschat ◽  
N. Serrano ◽  
N.B. Randsholt ◽  
G. Geraud

Engrailed is a nuclear regulatory protein with essential roles in embryonic segmentation and wing morphogenesis. One of its regulatory targets in embryos was shown to be the Polycomb group gene, polyhomeotic. We show here that transheterozygous adult flies, mutant for both engrailed and polyhomeotic, show a gap in the fourth vein. In the corresponding larval imaginal discs, a polyhomeotic-lacZ enhancer trap is not normally activated in anterior cells adjacent to the anterior-posterior boundary. This intermediary region corresponds to the domain of low engrailed expression that appears in the anterior compartment, during L3. Several arguments show that engrailed is responsible for the induction of polyhomeotic in these cells. The role of polyhomeotic in this intermediary region is apparently to maintain the repression of hedgehog in the anterior cells abutting the anterior-posterior boundary, since these cells ectopically express hedgehog when polyhomeotic is not activated. This leads to ectopic expressions first of patched, then of cubitus interruptus and decapentaplegic in the posterior compartment, except for the dorsoventral border cells that are not affected. Thus posterior cells express a new set of genes that are normally characteristic of anterior cells, suggesting a change in the cell identity. Altogether, our data indicate that engrailed and polyhomeotic interactions are required to maintain the anterior-posterior boundary and the posterior cell fate, just prior to the evagination of the wing.

Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1203-1212 ◽  
Author(s):  
Katerina Nestoras ◽  
Helena Lee ◽  
Jym Mohler

We have undertaken a genetic analysis of new strong alleles of knot (kn). The original kn1 mutation causes an alteration of wing patterning similar to that associated with mutations of fused (fu), an apparent fusion of veins 3 and 4 in the wing. However, unlike fu, strong kn mutations do not affect embryonic segmentation and indicate that kn is not a component of a general Hh (Hedgehog)-signaling pathway. Instead we find that kn has a specific role in those cells of the wing imaginal disc that are subject to ptc-mediated Hh-signaling. Our results suggest a model for patterning the medial portion of the Drosophila wing, whereby the separation of veins 3 and 4 is maintained by kn activation in the intervening region in response to Hh-signaling across the adjacent anterior-posterior compartment boundary.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 79-89 ◽  
Author(s):  
M.A. Singer ◽  
A. Penton ◽  
V. Twombly ◽  
F.M. Hoffmann ◽  
W.M. Gelbart

The imaginal disk expression of the TGF-beta superfamily member DPP in a narrow stripe of cells along the anterior-posterior compartment boundary is essential for proper growth and patterning of the Drosophila appendages. We examine DPP receptor function to understand how this localized DPP expression produces its global effects upon appendage development. Clones of saxophone (sax) or thick veins (tkv) mutant cells, defective in one of the two type I receptors for DPP, show shifts in cell fate along the anterior-posterior axis. In the adult wing, clones that are homozygous for a null allele of sax or a hypomorphic allele of tkv show shifts to more anterior fates when the clone is in the anterior compartment and to more posterior fates when the clone is in the posterior compartment. The effect of these clones upon the expression pattern of the downstream gene spalt-major also correlates with these specific shifts in cell fate. The similar effects of sax null and tkv hypomorphic clones indicate that the primary difference in the function of these two receptors during wing patterning is that TKV transmits more of the DPP signal than does SAX. Our results are consistent with a model in which a gradient of DPP reaches all cells in the developing wing blade to direct anterior-posterior pattern.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3359-3369 ◽  
Author(s):  
T. Tabata ◽  
C. Schwartz ◽  
E. Gustavson ◽  
Z. Ali ◽  
T.B. Kornberg

Anterior/posterior compartment borders bisect every Drosophila imaginal disc, and the engrailed gene is essential for their function. We analyzed the role of the engrailed and invected genes in wing discs by eliminating or increasing their activity. Removing engrailed/invected from posterior wing cells created two new compartments: an anterior compartment consisting of mutant cells and a posterior compartment that grew from neighboring cells. In some cases, these compartments formed a complete new wing. Increasing engrailed activity also affected patterning. These findings demonstrate that engrailed both directs the posterior compartment pathway and creates the compartment border. These findings also establish the compartment border as the pre-eminent organizational feature of disc growth and patterning.


Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1591-1599 ◽  
Author(s):  
M.C. Gibson ◽  
G. Schubiger

Surgically fragmented Drosophila appendage primordia (imaginal discs) engage in wound healing and pattern regulation during short periods of in vivo culture. Prothoracic leg disc fragments possess exceptional regulative capacity, highlighted by the ability of anterior cells to convert to posterior identity and establish a novel posterior compartment. This anterior/posterior conversion violates developmental lineage restrictions essential for normal growth and patterning of the disc, and thus provides an ideal model for understanding how cells change fate during epimorphic pattern regulation. Here we present evidence that the secreted signal encoded by hedgehog directs anterior/posterior conversion by activating the posterior-specific transcription factor engrailed in regulating anterior cells. In the absence of hedgehog activity, prothoracic leg disc fragments fail to undergo anterior/posterior conversion, but can still regenerate missing anterior pattern elements. We suggest that hedgehog-independent regeneration within the anterior compartment (termed integration) is mediated by the positional cues encoded by wingless and decapentaplegic. Taken together, our results provide a novel mechanistic interpretation of imaginal disc pattern regulation and permit speculation that similar mechanisms could govern appendage regeneration in other organisms.


Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3715-3726 ◽  
Author(s):  
A. Kopp ◽  
I. Duncan

In an accompanying report (Kopp, A., Muskavitch, M. A. T. and Duncan, I. (1997) Development 124, 3703–3714), we show that Hh protein secreted by posterior compartment cells patterns the posterior portion of the anterior compartment in adult abdominal segments. Here we show that this function of hh is mediated by optomotor-blind (omb). omb- mutants mimic the effects of loss-of-function alleles of hh: structures from the posterior of the anterior compartment are lost, and often this region develops as a mirror image of the anterior portion. Structures from the anterior part of the posterior compartment are also lost. In the pupa, omb expression in abdominal histoblasts is highest at or near the compartment boundary, and decreases in a shallow gradient toward the anterior. This gradient is due to activation of omb by Hh secreted by posterior compartment cells. In contrast to imaginal discs, this Hh signaling is not mediated by dpp or wg. We describe several gain-of-function alleles that cause ectopic expression of omb in the anterior of the segment. Most of these cause the anterior region to develop with posterior characteristics without affecting polarity. However, an allele that drives high level ubiquitous expression of omb (QdFab) causes the anterior tergite to develop as a mirror-image duplication of the posterior tergite, a pattern opposite to that seen in omb- mutants. Ubiquitous expression of hh causes similar double-posterior patterning. We find that omb- alleles suppress this effect of ectopic hh expression and that posterior patterning becomes independent of hh in the QdFab mutant. These observations indicate that omb is the primary target of hh signaling in the adult abdomen. However, it is clear that other targets exist. One of these is likely Scruffy, a novel gene that we describe, which acts in parallel to omb. To explain the effects of omb alleles, we propose that both anterior and posterior compartments in the abdomen are polarized by underlying symmetric gradients of unknown origin. We suggest that omb has two functions. First, it specifies the development of appropriate structures both anterior and posterior to the compartment boundary. Second, it causes cells to reverse their interpretation of polarity specified by the underlying symmetric gradients.


2020 ◽  
Vol 21 (21) ◽  
pp. 8047
Author(s):  
Emmanuel Varlet ◽  
Sara Ovejero ◽  
Anne-Marie Martinez ◽  
Giacomo Cavalli ◽  
Jerome Moreaux

Plasma cells (PC) are the main effectors of adaptive immunity, responsible for producing antibodies to defend the body against pathogens. They are the result of a complex highly regulated cell differentiation process, taking place in several anatomical locations and involving unique genetic events. Pathologically, PC can undergo tumorigenesis and cause a group of diseases known as plasma cell dyscrasias, including multiple myeloma (MM). MM is a severe disease with poor prognosis that is characterized by the accumulation of malignant PC within the bone marrow, as well as high clinical and molecular heterogeneity. MM patients frequently develop resistance to treatment, leading to relapse. Polycomb group (PcG) proteins are epigenetic regulators involved in cell fate and carcinogenesis. The emerging roles of PcG in PC differentiation and myelomagenesis position them as potential therapeutic targets in MM. Here, we focus on the roles of PcG proteins in normal and malignant plasma cells, as well as their therapeutic implications.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1691-1703 ◽  
Author(s):  
N. Serrano ◽  
H.W. Brock ◽  
C. Demeret ◽  
J.M. Dura ◽  
N.B. Randsholt ◽  
...  

In Drosophila, Engrailed is a nuclear regulatory protein with essential roles in embryonic segmentation and in normal development of posterior compartments. One of its regulatory targets appears to be polyhomeotic (ph), a Polycomb group gene. We observed, by immunostaining, that Engrailed protein binds to the site of the polyhomeotic locus in region 2D of polytene chromosomes. The same analysis carried out on a transgenic line containing one copy of a P(ph-lacZ) construct shows an additional Engrailed-binding site at the location of the insert. In vivo, polyhomeotic depends on engrailed function in germ-band-elongated embryos, when engrailed and polyhomeotic genes are expressed in similar patterns. By in vitro immunoprecipitations and gel shift assays, we identified two classes of high affinity Engrailed-binding sites upstream of each of the two polyhomeotic transcription units. DNA fragments containing these sites were also immunoprecipitated from embryonic UV crosslinked chromatin in presence of anti-Engrailed antibody. These results suggest that polyhomeotic activation in germ-band-elongated embryos could be mediated by Engrailed-binding to these sites.


2000 ◽  
Vol 78 (5) ◽  
pp. 585-591 ◽  
Author(s):  
William J Brook

Growth and cell fate in the anterior-posterior (A/P) axis of the developing wing of Drosophila melanogaster are controlled by a stripe of cells bisecting the axis called the A/P organizer. Hedgehog (Hh) signaling from posterior to anterior cells induces the organizer. Several Hh-responsive genes expressed by cells of the organizer mediate its patterning activity. The Hh-signaling pathway controls the post-translational modification of the transcription factor Cubitus-interruptus (Ci) and the resulting local activation of Ci is required for the correct location of the A/P organizer.Key words: Hedgehog, morphogen, Drosophila, limb development, signal transduction.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 849
Author(s):  
Han Leng Ng ◽  
Elizabeth Quail ◽  
Mark N. Cruickshank ◽  
Daniela Ulgiati

Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis‑inhibition in regulating Notch signaling in mammalian development.


Sign in / Sign up

Export Citation Format

Share Document