Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila

Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4531-4540 ◽  
Author(s):  
T.L. Jacobsen ◽  
K. Brennan ◽  
A.M. Arias ◽  
M.A. Muskavitch

We find that ectopic expression of Delta or Serrate in neurons within developing bristle organs is capable of non-autonomously inducing the transformation of the pre-trichogen cell into a tormogen cell in a wide variety of developmental contexts. The frequencies at which Delta can induce these transformations are dependent on the level of ectopic Delta expression and the levels of endogenous Notch signalling pathway components. The pre-trichogen cell becomes more responsive to Delta- or Serrate-mediated transformation when the level of endogenous Delta is reduced and less responsive when the dosage of endogenous Delta is increased, supporting the hypothesis that Delta interferes autonomously with the ability of a cell to receive either signal. We also find that a dominant-negative form of Notch, ECN, is capable of autonomously interfering with the ability of a cell to generate the Delta signal. When the region of Notch that mediates trans-interactions between Delta and the Notch extracellular domain is removed from ECN, the ability of Delta to signal is restored. Our findings imply that cell-autonomous interactions between Delta and Notch can affect the ability of a cell to generate and to transduce a Delta-mediated signal. Finally, we present evidence that the Fringe protein can interfere with Delta- and Serrate-mediated signalling within developing bristle organs, in contrast to previous reports of the converse effects of Fringe on Delta signalling in the developing wing.

Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3393-3402 ◽  
Author(s):  
Kenneth M. Cadigan ◽  
Austin D. Jou ◽  
Roel Nusse

In the developing eye, wingless activity represses proneural gene expression (and thus interommatidial bristle formation) and positions the morphogenetic furrow by blocking its initiation in the dorsal and ventral regions of the presumptive eye. We provide evidence that wingless mediates both effects, at least in part, through repression of the basic helix-loop-helix protein Daughterless. daughterless is required for high proneural gene expression and furrow progression. Ectopic expression of wingless blocks Daughterless expression in the proneural clusters. This repression, and that of furrow progression, can be mimicked by an activated form of armadillo and blocked by a dominant negative form of pangolin/TCF. Placing daughterless under the control of a heterologous promoter blocks the ability of ectopic wingless to inhibit bristle formation and furrow progression. hedgehog and decapentapleigic could not rescue the wingless furrow progression block, indicating that wingless acts downstream of these genes. In contrast, Atonal and Scute, which are thought to heterodimerize with Daughterless to promote furrow progression and bristle formation, respectively, can block ectopic wingless action. These results are summarized in a model where daughterless is a major, but probably not the only, target of wingless action in the eye.


2000 ◽  
Vol 20 (23) ◽  
pp. 8684-8695 ◽  
Author(s):  
Kuo-I Lin ◽  
Yi Lin ◽  
Kathryn Calame

ABSTRACT The importance of c-myc as a target of the Blimp-1 repressor has been studied in BCL-1 cells, in which Blimp-1 is sufficient to trigger terminal B-cell differentiation. Our data show that Blimp-1-dependent repression of c-myc is required for BCL-1 differentiation, since constitutive expression of c-Myc blocked differentiation. Furthermore, ectopic expression of cyclin E mimicked the effects of c-Myc on both proliferation and differentiation, indicating that the ability of c-Myc to drive proliferation is responsible for blocking BCL-1 differentiation. However, inhibition of c-Myc by a dominant negative form was not sufficient to drive BCL-1 differentiation. Thus, during Blimp-1-dependent plasma cell differentiation, repression of c-myc is necessary but not sufficient, demonstrating the existence of additional Blimp-1 target genes.


Development ◽  
2001 ◽  
Vol 128 (12) ◽  
pp. 2221-2232 ◽  
Author(s):  
David R. Sherwood ◽  
David R. McClay

The molecular mechanisms guiding the positioning of the ectoderm-endoderm boundary along the animal-vegetal axis of the sea urchin embryo remain largely unknown. We report here a role for the sea urchin homolog of the Notch receptor, LvNotch, in mediating the position of this boundary. Overexpression of an activated form of LvNotch throughout the embryo shifts the ectoderm-endoderm boundary more animally along the animal-vegetal axis, whereas expression of a dominant negative form shifts the border vegetally. Mosaic experiments that target activated and dominant negative forms of LvNotch into individual blastomeres of the early embryo, combined with lineage analyses, further reveal that LvNotch signaling mediates the position of this boundary by distinct mechanisms within the animal versus vegetal portions of the embryo. In the animal region of the embryo, LvNotch signaling acts cell autonomously to promote endoderm formation more animally, while in the vegetal portion, LvNotch signaling also promotes the ectoderm-endoderm boundary more animally, but through a cell non-autonomous mechanism. We further demonstrate that vegetal LvNotch signaling controls the localization of nuclear β-catenin at the ectoderm-endoderm boundary. Based on these results, we propose that LvNotch signaling promotes the position of the ectoderm-endoderm boundary more animally via two mechanisms: (1) a cell-autonomous function within the animal region of the embryo, and (2) a cell non-autonomous role in the vegetal region that regulates a signal(s) mediating ectoderm-endoderm position, possibly through the control of nuclear β-catenin at the boundary.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2951-2962 ◽  
Author(s):  
T. Klein ◽  
A.M. Arias

The Notch signalling pathway plays an important role during the development of the wing primordium, especially of the wing blade and margin. In these processes, the activity of Notch is controlled by the activity of the dorsal specific nuclear protein Apterous, which regulates the expression of the Notch ligand, Serrate, and the Fringe signalling molecule. The other Notch ligand, Delta, also plays a role in the development and patterning of the wing. It has been proposed that Fringe modulates the ability of Serrate and Delta to signal through Notch and thereby restricts Notch signalling to the dorsoventral boundary of the developing wing blade. Here we report the results of experiments aimed at establishing the relationships between Fringe, Serrate and Delta during wing development. We find that Serrate is not required for the initiation of wing development but rather for the expansion and early patterning of the wing primordium. We provide evidence that, at the onset of wing development, Delta is under the control of apterous and might be the Notch ligand in this process. In addition, we find that Fringe function requires Su(H). Our results suggest that Notch signalling during wing development relies on careful balances between positive and dominant negative interactions between Notch ligands, some of which are mediated by Fringe.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Anamika Sharma ◽  
Gaiti Hasan

Innate behaviours, although robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Flies with attenuated IP3Rs in these presynaptic dopaminergic neurons exhibit shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.


2001 ◽  
Vol 13 (6) ◽  
pp. 777-783 ◽  
Author(s):  
Kazu Kikuchi ◽  
Yoshitada Kawasaki ◽  
Naoto Ishii ◽  
Yoshiteru Sasaki ◽  
Hironobu Asao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document