sog and dpp exert opposing maternal functions to modify toll signaling and pattern the dorsoventral axis of the Drosophila embryo

Development ◽  
2000 ◽  
Vol 127 (16) ◽  
pp. 3631-3644
Author(s):  
H. Araujo ◽  
E. Bier

The short gastrulation (sog) and decapentaplegic (dpp) genes function antagonistically in the early Drosophila zygote to pattern the dorsoventral (DV) axis of the embryo. This interplay between sog and dpp determines the extent of the neuroectoderm and subdivides the dorsal ectoderm into two territories. Here, we present evidence that sog and dpp also play opposing roles during oogenesis in patterning the DV axis of the embryo. We show that maternally produced Dpp increases levels of the I(kappa)B-related protein Cactus and reduces the magnitude of the nuclear concentration gradient of the NF(kappa)B-related Dorsal protein, and that Sog limits this effect. We present evidence suggesting that Dpp signaling increases Cactus levels by reducing a signal-independent component of Cactus degradation. Epistasis experiments reveal that sog and dpp act downstream of, or in parallel to, the Toll receptor to reduce translocation of Dorsal protein into the nucleus. These results broaden the role previously defined for sog and dpp in establishing the embryonic DV axis and reveal a novel form of crossregulation between the NF(kappa)B and TGF(beta) signaling pathways in pattern formation.

Development ◽  
2000 ◽  
Vol 127 (15) ◽  
pp. 3305-3312 ◽  
Author(s):  
H.L. Ashe ◽  
M. Mannervik ◽  
M. Levine

The dorsal ectoderm of the Drosophila embryo is subdivided into different cell types by an activity gradient of two TGF(β) signaling molecules, Decapentaplegic (Dpp) and Screw (Scw). Patterning responses to this gradient depend on a secreted inhibitor, Short gastrulation (Sog) and a newly identified transcriptional repressor, Brinker (Brk), which are expressed in neurogenic regions that abut the dorsal ectoderm. Here we examine the expression of a number of Dpp target genes in transgenic embryos that contain ectopic stripes of Dpp, Sog and Brk expression. These studies suggest that the Dpp/Scw activity gradient directly specifies at least three distinct thresholds of gene expression in the dorsal ectoderm of gastrulating embryos. Brk was found to repress two target genes, tailup and pannier, that exhibit different limits of expression within the dorsal ectoderm. These results suggest that the Sog inhibitor and Brk repressor work in concert to establish sharp dorsolateral limits of gene expression. We also present evidence that the activation of Dpp/Scw target genes depends on the Drosophila homolog of the CBP histone acetyltransferase.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3419-3432 ◽  
Author(s):  
B.T. Rogers ◽  
T.C. Kaufman

The structure of the insect head has long been a topic of enjoyable yet endless debate among entomologists. More recently geneticists and molecular biologists trying to better understand the structure of the head of the Dipteran Drosophila melanogaster have joined the discourse extrapolating from what they have learned about Drosophila to insects in general. Here we present the results of an investigation into the structure of the insect head as revealed by the distribution of engrailed related protein (Engrailed) in the insect orders Diptera, Siphonaptera, Orthoptera and Hemiptera. The results of this comparative embryology in conjunction with genetic experiments on Drosophila melanogaster lead us to conclude: (1) The insect head is composed of six Engrailed accumulating segments, four postoral and two preoral. The potential seventh and eighth segments (clypeus or labrum) do not accumulate Engrailed. (2) The structure known as the dorsal ridge is not specific to the Diptera but is homologous to structures found in other insect orders. (3) A part of this structure is a single segment-like entity composed of labial and maxillary segment derivatives which produce the most anterior cuticle capable of taking a dorsal fate. The segments anterior to the maxillary segment produce only ventral structures. (4) As in Drosophila, the process of segmentation of the insect head is fundamentally different from the process of segmentation in the trunk. (5) The pattern of Engrailed accumulation and its presumed role in the specification and development of head segments appears to be highly conserved while its role in other pattern formation events and tissue-specific expression is variable. An overview of the pattern of Engrailed accumulation in developing insect embryos provides a basis for discussion of the generality of the parasegment and the evolution of Engrailed patterns.


1956 ◽  
Vol 39 (5) ◽  
pp. 687-704 ◽  
Author(s):  
Ernest C. Foulkes

1. The distribution of azide added to suspensions of bakers' yeast was studied under various conditions. The recovery of azide was estimated in the volume of water into which low concentrations of electrolytes can readily diffuse (anion space). Considerable azide disappeared from this anion space. 2. The incomplete recovery of azide in the anion space is due to its uptake by the cells. This uptake occurs against a concentration gradient at 0°C., and is attributed to binding of azide by cell constituents. 3. Confirmatory evidence is presented that one such constituent is the K carrier in the cell membrane. The azide inhibition of K transport is not mediated by inhibition of cytochrome oxidase in the mitochondria. 4. From the amount of combined azide and the experimentally determined dissociation constant of the K carrier-inhibitor complex, the maximum value for the concentration of this carrier is calculated as 0.1 µM/gm. yeast. 5. The addition of glucose and PO4 causes a secondary K uptake which is not azide-sensitive and is clearly distinct from the primary, azide-sensitive mechanism. 6. The existence of a separate carrier responsible for Na extrusion is reconsidered. It is concluded that present evidence does not necessitate the assumption that such a carrier is active in yeast.


Development ◽  
1995 ◽  
Vol 121 (7) ◽  
pp. 2107-2116 ◽  
Author(s):  
K. Maggert ◽  
M. Levine ◽  
M. Frasch

The maternal dorsal regulatory gradient initiates the differentiation of the mesoderm, neuroectoderm and dorsal ectoderm in the early Drosophila embryo. Two primary dorsal target genes, snail (sna) and decapentaplegic (dpp), define the limits of the presumptive mesoderm and dorsal ectoderm, respectively. Normally, the sna expression pattern encompasses 18–20 cells in ventral and ventrolateral regions. Here we show that narrowing the sna pattern results in fewer invaginated cells. As a result, the mesoderm fails to extend into lateral regions so that fewer cells come into contact with dpp-expressing regions of the dorsal ectoderm. This leads to a substantial reduction in visceral and cardiac tissues, consistent with recent studies suggesting that dpp induces lateral mesoderm. These results also suggest that the dorsal regulatory gradient defines the limits of inductive interactions between germ layers after gastrulation. We discuss the parallels between the subdivision of the mesoderm and dorsal ectoderm.


Development ◽  
1988 ◽  
Vol 103 (2) ◽  
pp. 391-401 ◽  
Author(s):  
P. Simpson ◽  
M. El Messal ◽  
J. Moscoso del Prado ◽  
P. Ripoll

Clones of cells mutant for shaggy transform all hairs into bristles on the wing blade of Drosophila. Different types of bristles are formed at different locations. It is shown that, although shaggy cells are unable to make a correct decision between an epidermal cell pathway and that of a sensory bristle, they are nevertheless able to respond correctly to positional cues. A compilation of many clones led to the construction of a map of positional homologies in which all of the cells in any one area will produce the same kind of bristle. The result is a series of stripes oriented perpendicular to the anteroposterior axis of the wing and parallel to the dorsoventral axis. The significance of these stripes in relation to mechanisms of pattern formation is discussed.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 135-148 ◽  
Author(s):  
S. Govind ◽  
L. Brennan ◽  
R. Steward

The maternal-effect gene dorsal encodes the ventral morphogen that is essential for elaboration of ventral and ventrolateral fates in the Drosophila embryo. Dorsal belongs to the rel family of transcription factors and controls asymmetric expression of zygotic genes along the dorsoventral axis. The dorsal protein is cytoplasmic in early embryos, possibly because of a direct interaction with cactus. In response to a ventral signal, dorsal protein becomes partitioned into nuclei of cleavage-stage syncytial blastoderms such that the ventral nuclei have the maximum amount of dorsal protein, and the lateral and dorsal nuclei have progressively less protein. Here we show that transgenic flies containing the dorsal cDNA, which is driven by the constitutively active hsp83 promoter, exhibits rescue of the dorsal- phenotype. Transformed lines were used to increase the level of dorsal protein. Females with dorsal levels roughly twice that of wild-type produced normal embryos, while a higher level of dorsal protein resulted in phenotypes similar to those observed for loss-of-function cactus mutations. By manipulating the cactus gene dose, we found that in contrast to a dorsal/cactus ratio of 2.5 which resulted in fully penetrant weak ventralization, a cactus/dorsal ratio of 3.0 was acceptable by the system. By manipulating dorsal levels in different cactus and dorsal group mutant backgrounds, we found that the relative amounts of ventral signal to that of the dorsal-cactus complex is important for the elaboration of the normal dorsoventral pattern. We propose that in a wild-type embryo, the activities of dorsal and cactus are not independently regulated; excess cactus activity is deployed only if a higher level of dorsal protein is available. Based on these results we discuss how the ventral signal interacts with the dorsal-cactus complex, thus forming a gradient of nuclear dorsal protein.


2017 ◽  
Vol 145 ◽  
pp. S84
Author(s):  
Jay B. Lusk ◽  
Vanessa Y.M. Lam ◽  
Nicholas S. Tolwinski

2013 ◽  
Vol 24 (3) ◽  
pp. 361-372 ◽  
Author(s):  
Albert Carbonell ◽  
Alexander Mazo ◽  
Florenci Serras ◽  
Montserrat Corominas

The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain–containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is required for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.


Sign in / Sign up

Export Citation Format

Share Document