Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine

Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3805-3813 ◽  
Author(s):  
H. Lickert ◽  
C. Domon ◽  
G. Huls ◽  
C. Wehrle ◽  
I. Duluc ◽  
...  

During mammalian development, the Cdx1 homeobox gene exhibits an early period of expression when the embryonic body axis is established, and a later period where expression is restricted to the embryonic intestinal endoderm. Cdx1 expression is maintained throughout adulthood in the proliferative cell compartment of the continuously renewed intestinal epithelium, the crypts. In this study, we provide evidence in vitro and in vivo that Cdx1 is a direct transcriptional target of the Wnt/(beta)-catenin signaling pathway. Upon Wnt stimulation, expression of Cdx1 can be induced in mouse embryonic stem (ES) cells as well as in undifferentiated rat embryonic endoderm. Tcf4-deficient mouse embryos show abrogation of Cdx1 protein in the small intestinal epithelium, making Tcf4 the likely candidate to transduce Wnt signal in this part of gut. The promoter region of the Cdx1 gene contains several Tcf-binding motifs, and these bind Tcf/Lef1/(beta)-catenin complexes and mediate (beta)-catenin-dependent transactivation. The transcriptional regulation of the homeobox gene Cdx1 in the intestinal epithelium by Wnt/(beta)-catenin signaling underlines the importance of this signaling pathway in mammalian endoderm development.

2006 ◽  
Vol 18 (2) ◽  
pp. 110 ◽  
Author(s):  
D. Pant ◽  
C. Keefer

Genetic modification of embryonic stem (ES) cells derived from domestic species could be exploited to produce transgenic animals; however, fully validated ES have not been obtained in domestic species. Recent findings regarding key transcription factors and regulation of pluripotency and self-renewal in murine ES cells may provide keys to enable the derivation of ES in domestic species. The aim of this study was to identify and monitor the expression of candidate genes, which are known to be involved in the maintenance of self-renewal and pluripotency in mouse and human ES cells, during the critical first steps in establishment of primary cultures. Inner cell masses (ICMs) were isolated via manual dissection of 25 to 30 commercial in vitro-produced (IVP) blastocysts (Bomed, Inc., Madison, WI, USA) in each of three separate replicates and from 10 in vivo-derived Day 7-8 bovine blastocysts. On the day of ICM isolation (Day 0), 4-5 ICM clumps were collected for RT-PCR analysis. The remaining isolated ICMs were cultured (4-5 ICM clumps per well) on mitomycin C (Sigma-Aldrich, St. Louis, MO, USA)-inactivated mouse embryonic fibroblasts (STO, ATCC, Manassas, VA, USA). The ICM clumps were cultured in 12-well tissue culture dishes in ES medium consisting of Knockout DMEM (Invitrogen, Carlsbad, CA, USA) supplemented with 15% FCS (Hyclone, Logan, UT, USA), 2 mM l-glutamine (Invitrogen), 0.1 mM 2-mercaptoethanol (MP Biomedicals, Irvine, CA, USA), and non-essential amino acids (Sigma). Two to four cultured ICM clumps were collected for RT-PCR analysis on Days 1-4 from IVP embryos and on Days 2, 4, and 6 from in vivo-derived embryos. Total RNA was extracted from the collected samples using the Absolutely RNA Nanoprep Kit (Strategene, La Jolla, CA, USA). First-strand DNAs were synthesized using Superscript III (Invitrogen) and cDNAs were amplified with PfuUltra hotstart PCR mastermix (Stratagene). Primers were designed based on homology between human and mouse sequences and were validated using bovine tissues. In experiments spanning these critical first few days of culture, the pluripotency-related genes (Nanog, Oct-4, Sox-2) and components of the LIF (LIFR, Gp130), BMP (Bmpr1a, Id-1), and Wnt (Beta-catenin, Frizzled) pathways were expressed in the ICM cultures over the 4 days of IVP-ICM cultures and the 6 days of in vivo-derived ICM cultures. These results indicate that the markers of pluripotency and the components of signaling pathways implicated in the maintenance of murine embryonic stem cells are present in ICMs of Day 7-8 bovine blastocysts and continue to be expressed at least during the initial days of culture. Genes (NCAM, Lef1) associated with early differentiation, however, were also expressed. Whether their expression is an indicator of ICM differentiation or of residual contamination with trophectoderm remains to be determined. Further studies will determine whether stimulation of these pathways can facilitate efficient derivation and maintenance ruminant ES cells.


2021 ◽  
Vol 118 (38) ◽  
pp. e2109475118
Author(s):  
Masaki Kinoshita ◽  
Meng Amy Li ◽  
Michael Barber ◽  
William Mansfield ◽  
Sabine Dietmann ◽  
...  

Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On further investigation we found that in vivo and in vitro the formative pluripotency transition is derailed toward production of trophoblast. This aberrant trajectory is associated with failure to suppress activation of Ascl2. Ascl2 encodes a bHLH transcription factor expressed in the placenta. Misexpression of Ascl2 in ES cells provokes transdifferentiation to trophoblast-like cells. Conversely, Ascl2 deletion rescues formative transition of Dnmt3a/b mutants and improves contribution to chimeric epiblast. Thus, de novo DNA methylation safeguards against ectopic activation of Ascl2. However, Dnmt3a/b-deficient cells remain defective in ongoing embryogenesis. We surmise that multiple developmental transitions may be secured by DNA methylation silencing potentially disruptive genes.


2003 ◽  
Vol 75 (11-12) ◽  
pp. 1709-1732 ◽  
Author(s):  
Manuel Mark ◽  
Pierre Chambon

Retinoids, the active metabolites of vitamin A, regulate complex gene networks involved in vertebrate morphogenesis, growth, cellular differentiation, and homeostasis. They are used for the treatment of skin disorders and as chemopreventive agents for certain cancers. Molecular biology and genetic studies performed during the last 15 years in vitro, using either acellular systems or transfected cells, have shown that retinoid actions are mediated through heterodimers between the 8 major RARα, β, and γ; isoforms and the 6 major RXRα, β and γ isoforms that belong to the nuclear receptor (NR) superfamily, and act as ligand-dependent transcriptional regulators. Furthermore, RXRs not only heterodimerize with RARs, but also with numerous other members of the NR superfamily. As in vitro studies are carried out under nonphysiological conditions, they only indicate what is possible, but not necessarily what is actually occurring in vivo. Therefore, mutations have been introduced by homologous recombination (HR) in F9 embryonal carcinoma (EC) cells, a cell-autonomous system that differentiates in the presence of RA, in order to disrupt RAR and RXR genes and establish their cellular and molecular functions in RA-induced differentiation. However, genetic approaches in the animal should be used to determine the function of retinoid receptors under truly physiological conditions. HR in embryonic stem (ES) cells, has therefore been used to generate null mutations of the various RARs and RXRs in the mouse germline. As reviewed here, the generation of such RAR and RXR germline mutations, combined with pharmacological approaches to block the RA signaling pathway, has provided many valuable insights on the developmental functions of RA receptors. However, due to (i) the complexity in "hormonal" signaling through transduction by the multiple RARs and RXRs, (ii) the functional redundancies (possibly artefactually generated by the mutations) within receptor isotypes belonging to a given gene family, and (iii) in utero or postnatal lethality of certain germline null mutations, these genetic studies through germline mutagenesis have failed to reveal many of the physiological functions of RARs and RXRs, notably in adults. We conclude that spatio-temporally controlled somatic mutations generated in animal models in given cell-types/tissues and at chosen times during pre- and postnatal life, are required to reveal the physiological and pathophysiological functions of the receptor genes involved in the retinoid signaling pathway throughout the life of the mouse.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


2002 ◽  
Vol 22 (10) ◽  
pp. 3509-3517 ◽  
Author(s):  
Hitoshi Okada ◽  
Woong-Kyung Suh ◽  
Jianping Jin ◽  
Minna Woo ◽  
Chunying Du ◽  
...  

ABSTRACT The mitochondrial proapoptotic protein Smac/DIABLO has recently been shown to potentiate apoptosis by counteracting the antiapoptotic function of the inhibitor of apoptosis proteins (IAPs). In response to apoptotic stimuli, Smac is released into the cytosol and promotes caspase activation by binding to IAPs, thereby blocking their function. These observations have suggested that Smac is a new regulator of apoptosis. To better understand the physiological function of Smac in normal cells, we generated Smac-deficient (Smac−/− ) mice by using homologous recombination in embryonic stem (ES) cells. Smac−/− mice were viable, grew, and matured normally and did not show any histological abnormalities. Although the cleavage in vitro of procaspase-3 was inhibited in lysates of Smac−/− cells, all types of cultured Smac−/− cells tested responded normally to all apoptotic stimuli applied. There were also no detectable differences in Fas-mediated apoptosis in the liver in vivo. Our data strongly suggest the existence of a redundant molecule or molecules capable of compensating for a loss of Smac function.


2015 ◽  
Vol 13 (1) ◽  
pp. 720-730 ◽  
Author(s):  
LIPING OU ◽  
LIAOQIONG FANG ◽  
HEJING TANG ◽  
HAI QIAO ◽  
XIAOMEI ZHANG ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Weidong Zhu ◽  
Ichiro Shiojima ◽  
Li Zhi ◽  
Hiroyuki Ikeda ◽  
Masashi Yoshida ◽  
...  

Insulin-like growth factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the effects of IGFBPs appear to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. In this study we demonstrate that IGFBP-4 is a novel cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation of P19CL6 embryonal carcinoma cells and embryonic stem (ES) cells in vitro. Conversely, siRNA-mediated knockdown of IGFBP-4 in P19CL6 cells or ES cells attenuated cardiomyocyte differentiation, and morpholino-mediated knockdown of IGFBP-4 in Xenopus embryos resulted in severe cardiac defects and complete absence of the heart in extreme cases. We also demonstrate that the cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signaling. IGFBP-4 physically interacted with a Wnt receptor Frizzled 8 (Frz8) and a Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Moreover, the cardiogenic defects induced by IGFBP-4 knockdown both in vitro and in vivo was rescued by simultaneous inhibition of canonical Wnt signaling. Thus, IGFBP-4 is an inhibitor of the canonical Wnt signaling, and Wnt inhibition by IGFBP-4 is required for cardiogenesis. The present study provides a molecular link between IGF signaling and Wnt signaling, and suggests that IGFBP-4 may be a novel therapeutic target for heart diseases.


Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2273-2282 ◽  
Author(s):  
W. Dean ◽  
L. Bowden ◽  
A. Aitchison ◽  
J. Klose ◽  
T. Moore ◽  
...  

In vitro manipulation of preimplantation mammalian embryos can influence differentiation and growth at later stages of development. In the mouse, culture of embryonic stem (ES) cells affects their totipotency and may give rise to fetal abnormalities. To investigate whether this is associated with epigenetic alterations in imprinted genes, we analysed two maternally expressed genes (Igf2r, H19) and two paternally expressed genes (Igf2, U2af1-rs1) in ES cells and in completely ES cell-derived fetuses. Altered allelic methylation patterns were detected in all four genes, and these were consistently associated with allelic changes in gene expression. All the methylation changes that had arisen in the ES cells persisted on in vivo differentiation to fetal stages. Alterations included loss of methylation with biallelic expression of U2af1-rs1, maternal methylation and predominantly maternal expression of Igf2, and biallelic methylation and expression of Igf2r. In many of the ES fetuses, the levels of H19 expression were strongly reduced, and this biallelic repression was associated with biallellic methylation of the H19 upstream region. Surprisingly, biallelic H19 repression was not associated with equal levels of Igf2 expression from both parental chromosomes, but rather with a strong activation of the maternal Igf2 allele. ES fetuses derived from two of the four ES lines appeared developmentally compromised, with polyhydramnios, poor mandible development and interstitial bleeding and, in chimeric fetuses, the degree of chimerism correlated with increased fetal mass. Our study establishes a model for how early embryonic epigenetic alterations in imprinted genes persist to later developmental stages, and are associated with aberrant phenotypes.


Author(s):  
Sangeetha Vadakke-Madathil ◽  
Gina LaRocca ◽  
Koen Raedschelders ◽  
Jesse Yoon ◽  
Sarah J. Parker ◽  
...  

The extremely limited regenerative potential of adult mammalian hearts has prompted the need for novel cell-based therapies that can restore contractile function in heart disease. We have previously shown the regenerative potential of mixed fetal cells that were naturally found migrating to the injured maternal heart. Exploiting this intrinsic mechanism led to the current hypothesis that Caudal-type homeobox-2 (Cdx2) cells in placenta may represent a novel cell type for cardiac regeneration. Using a lineage-tracing strategy, we specifically labeled fetal-derived Cdx2 cells with enhanced green fluorescent protein (eGFP). Cdx2-eGFP cells from end-gestation placenta were assayed for cardiac differentiation in vitro and in vivo using a mouse model of myocardial infarction. We observed that these cells differentiated into spontaneously beating cardiomyocytes (CMs) and vascular cells in vitro, indicating multipotentiality. When administered via tail vein to infarcted wild-type male mice, they selectively and robustly homed to the heart and differentiated to CMs and blood vessels, resulting in significant improvement in contractility as noted by MRI. Proteomics and immune transcriptomics studies of Cdx2-eGFP cells compared with embryonic stem (ES) cells reveal that they appear to retain “stem”-related functions of ES cells but exhibit unique signatures supporting roles in homing and survival, with an ability to evade immune surveillance, which is critical for cell-based therapy. Cdx2-eGFP cells may potentially represent a therapeutic advance in allogeneic cell therapy for cardiac repair.


2019 ◽  
Vol 120 ◽  
pp. 109436 ◽  
Author(s):  
Zhizhen Sun ◽  
Hongting Jin ◽  
Huifen Zhou ◽  
Li Yu ◽  
Haitong Wan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document