Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein Pipe

Development ◽  
2000 ◽  
Vol 127 (24) ◽  
pp. 5541-5550 ◽  
Author(s):  
J. Sen ◽  
J.S. Goltz ◽  
M. Konsolaki ◽  
T. Schupbach ◽  
D. Stein

Drosophila embryonic dorsal-ventral polarity originates in the ovarian follicle through the restriction of pipe gene expression to a ventral subpopulation of follicle cells. Pipe, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of an extracellular serine proteolytic cascade which defines the ventral side of the embryo. When pipe is expressed uniformly in the follicle cell layer, a strong ventralization of the resulting embryos is observed. Here, we show that this ventralization is dependent on the other members of the dorsal group of genes controlling dorsal-ventral polarity, but not on the state of the Epidermal Growth Factor Receptor signal transduction pathway which defines egg chamber polarity. Pipe protein expressed in vertebrate tissue culture cells localizes to the endoplasmic reticulum. Strikingly, coexpression of the dorsal group gene windbeutel in those cells directs Pipe to the Golgi. Similarly, Pipe protein exhibits an altered subcellular localization in the follicle cells of females mutant for windbeutel. Thus, Windbeutel protein enables the correct subcellular distribution of Pipe to facilitate its pattern-forming activity.

Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4553-4562 ◽  
Author(s):  
Deborah J. Goff ◽  
Laura A. Nilson ◽  
Donald Morisato

The dorsal-ventral pattern of the Drosophila egg is established during oogenesis. Epidermal growth factor receptor (Egfr) signaling within the follicular epithelium is spatially regulated by the dorsally restricted distribution of its presumptive ligand, Gurken. As a consequence, pipe is transcribed in a broad ventral domain to initiate the Toll signaling pathway in the embryo, resulting in a gradient of Dorsal nuclear translocation. We show that expression of pipe RNA requires the action of fettucine (fet) in ovarian follicle cells. Loss of maternal fet activity produces a dorsalized eggshell and embryo. Although similar mutant phenotypes are observed with regulators of Egfr signaling, genetic analysis suggests that fet acts downstream of this event. The fet mutant phenotype is rescued by a transgene of capicua (cic), which encodes an HMG-box transcription factor. We show that Cic protein is initially expressed uniformly in ovarian follicle cell nuclei, and is subsequently downregulated on the dorsal side. Earlier studies described a requirement for cic in repressing zygotic target genes of both the torso and Toll pathways in the embryo. Our experiments reveal that cic controls dorsal-ventral patterning by regulating pipe expression in ovarian follicle cells, before its previously described role in interpreting the Dorsal gradient.


2000 ◽  
Vol 113 (21) ◽  
pp. 3781-3794 ◽  
Author(s):  
D. Zhao ◽  
D. Clyde ◽  
M. Bownes

Signalling by the Gurken/Epidermal Growth Factor Receptor (Grk/EGFR) pathway is involved in epithelial cell fate decision, morphogenesis and axis establishment in Drosophila oogenesis. In the search for genes downstream of the Grk/EGFR signal transduction pathway (STP), we isolated a number of genes that are components of other STPs. One of them is a known gene, called fringe (fng). Drosophila fng encodes a putative secreted protein that is required at other development stages for mediating interactions between dorsal and ventral cells via Notch signalling. Here we show that fng has a dynamic expression pattern in oogenesis and that its expression in specific groups of follicle cells along the anterior-posterior and dorsal-ventral axes is defined by the repression of fng by Grk. Interfering with fng expression using antisense RNA experiments resulted in a typical fng mutant phenotype in the wing, and malformed egg chambers and abnormal organisation of the follicle cells in the ovaries, revealing that fng is essential in oogenesis for the proper formation of the egg chamber and for epithelial morphogenesis. This has been confirmed by re-examination of fng mutants and analysis of fng mutant clones in oogenesis.


Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2209-2222 ◽  
Author(s):  
Karen E. James ◽  
Jennie B. Dorman ◽  
Celeste A. Berg

In Drosophila melanogaster, the Ras signal transduction pathway is the primary effector of receptor tyrosine kinases, which govern diverse developmental programs. During oogenesis, epidermal growth factor receptor signaling through the Ras pathway patterns the somatic follicular epithelium, establishing the dorsoventral asymmetry of eggshell and embryo. Analysis of follicle cell clones homozygous for a null allele of Ras demonstrates that Ras is required cell-autonomously to repress pipe transcription, the critical first step in embryonic dorsoventral patterning. The effects of aberrant pipe expression in Ras mosaic egg chambers can be ameliorated, however, by post-pipe patterning events, which salvage normal dorsoventral polarity in most embryos derived from egg chambers with dorsal Ras clones. The patterned follicular epithelium also determines the final shape of the eggshell, including the dorsal respiratory appendages, which are formed by the migration of two dorsolateral follicle cell populations. Confocal analyses of mosaic egg chambers demonstrate that Ras is required both cell- and non cell-autonomously for morphogenetic behaviors characteristic of dorsal follicle cell migration, and reveal a novel, Ras-dependent pattern of basal E-cadherin localization in dorsal midline follicle cells.


1963 ◽  
Vol s3-104 (67) ◽  
pp. 297-320
Author(s):  
R. C. KING ◽  
ELIZABETH A. KOCH

Studies are described of the ultrastructure of the follicle cells which invest the oocyte of Drosophila melanogaster at the time of vitelline membrane formation. Of particular interest are organelles made up of endoplasmic reticulum organized into a husk of concentric lamellae which surround lipidal droplets. These epithelial bodies are seen only at the time the vitelline membrane is being formed, and it is assumed therefore that the lipidal material of the epithelial body may be utilized somehow in the fabrication of the vitelline membrane. Cytochemical studies have shown this membrane to contain at least 5 classes of compounds; a protein, two lipids (which may be distinguished by differences in their resistance to extraction by various solvents), and 2 polysaccharides (1 neutral and 1 acidic). Studies were made of vitelline membrane formation in the ovaries of flies homozygous for either of 2 recessive, female-sterile genes (tiny and female sterile). In the case of the ty mutation vitelline membrane material is sometimes secreted between follicle and nurse cells, while in the mutant fes vitelline membrane is observed in rare instances to be secreted between follicle cells and an adjacent layer of tumour cells. In the latter case the vitelline membrane shows altered cytochemical properties. The fact that vitelline membrane can be secreted by follicle cells not adjacent to an oocyte demonstrates that it is the follicle cell rather than the oocyte that plays the major role in the secretion of the precursor material of the vitelline membrane. Subsequently the follicle cells secrete the egg-shell, or chorion, which is subdivided into a dense, compartmented, inner endochorion, and a pale, outer exochorion. A description is given of the ultrastructure of the follicle cells during the secretion of the endochorion and the exochorion. The endochorion contains a protein, a polysaccharide, and a lipid, all of which may be distinguished cytochemically from the vitelline membrane compounds. The exochorion contains large amounts of acidic mucopolysaccharides. Specialized follicle cells form the micropylar apparatus and the chorionic appendages. The formation of the chorion and chorionic appendages is discussed in the light of information gained from abnormalities of the chorions and chorionic appendages seen in ty and fs 2.1 oocytes. Subsequent to the time the egg leaves the ovariole a layer of waterproofing wax is secreted between the vitelline membrane and the chorion.


Author(s):  
Sifang Liao ◽  
Dick R. Nässel

AbstractIn Drosophila eight insulin-like peptides (DILP1-8) are encoded on separate genes. These DILPs are characterized by unique spatial and temporal expression patterns during the lifecycle. Whereas functions of several of the DILPs have been extensively investigated at different developmental stages, the role of DILP8 signaling is primarily known from larvae and pupae where it couples organ growth and developmental transitions. In adult female flies, a study showed that a specific set of neurons that express the DILP8 receptor, Lgr3, is involved in regulation of reproductive behavior. Here, we further investigated the expression of dilp8/DILP8 and Lgr3 in adult female flies and the functional role of DILP8 signaling. The only site where we found both dilp8 expression and DILP8 immunolabeling was in follicle cells of mature ovaries. Lgr3 expression was detected in numerous neurons in the brain and ventral nerve cord, a small set of peripheral neurons innervating the abdominal heart, as well as in a set of follicle cells close to the oviduct. Ovulation was affected in dilp8 mutants as well as after dilp8-RNAi using dilp8 and follicle cell Gal4 drivers. More eggs were retained in the ovaries and fewer were laid, indicating that DILP8 is important for ovulation. Our data suggest that DILP8 signals locally to Lgr3 expressing follicle cells as well as systemically to Lgr3 expressing efferent neurons in abdominal ganglia that innervate oviduct muscle. Thus, DILP8 may act at two targets to regulate ovulation: follicle cell rupture and oviduct contractions. Furthermore, we could show that manipulations of dilp8 expression affect food intake and starvation resistance. Possibly this reflects a feedback signaling between ovaries and the CNS that ensures nutrients for ovary development. In summary, it seems that DILP8 signaling in regulation of reproduction is an ancient function, conserved in relaxin signaling in mammals.


1971 ◽  
Vol 8 (3) ◽  
pp. 735-750
Author(s):  
LUCY M. ANDERSON

A procedure has been developed for separating the oocytes and follicular epithelium-nurse cell complexes making up the vitellogenic ovarian follicle of the Cecropia moth. Both components remained viable during short-term in vitro incubation in female blood. Isolated epithelial cells were found by autoradiography to incorporate tritiated amino acids and to secrete a fixable, non-dialysable labelled material. Isolated oocytes incubated in a blood medium containing this tritiated, dialysed follicle cell product incorporated it in small cortical yolk bodies, presumably by pinocytosis. Quantitative perchloric acid-precipitation and scintillation counting indicated that the amount of labelled material incorporated by the oocytes increased with time. These results provide direct confirmation of a follicle contribution to the yolk. Isolated oocytes were also tested for their ability to incorporate labelled amino acids. Fixable label was observed autoradiographically throughout the oocyte cytoplasm, with the greatest concentration in the cortex, but little appeared in the yolk spheres. The amount of perchloric acid-precipitable amino acid in oocytes incubated in female blood increased with time for up to 2 h and then remained constant or decreased slightly. In medium that had been previously conditioned by follicle cells and dialysed, however, incorporation of labelled amino acid continued for at least 4 h. A possible interpretation of this result is that stimulation of pinocytosis by the epithelial cell products causes increased turnover of cell membrane and demands continued synthesis of new proteins. Labelled female blood proteins were not incorporated into yolk to an appreciable extent by isolated oocytes, even in the presence of follicle cell product. Perhaps extracellular preconcentration, as occurs in the intact follicle, is necessary for effective accrual of blood proteins. The female blood proteins did become associated with the oocyte cortex, however, and exhibited a higher affinity for the oocyte than male blood proteins. Thus preferential adsorption to the oocyte surface may be a component of the selection process in vitellogenesis.


Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 745-754 ◽  
Author(s):  
L.L. Dobens ◽  
J.S. Peterson ◽  
J. Treisman ◽  
L.A. Raftery

The Drosophila BMP homolog DPP can function as a morphogen, inducing multiple cell fates across a developmental field. However, it is unknown how graded levels of extracellular DPP are interpreted to organize a sharp boundary between different fates. Here we show that opposing DPP and EGF signals set the boundary for an ovarian follicle cell fate. First, DPP regulates gene expression in the follicle cells that will create the operculum of the eggshell. DPP induces expression of the enhancer trap reporter A359 and represses expression of bunched, which encodes a protein similar to the mammalian transcription factor TSC-22. Second, DPP signaling indirectly regulates A359 expression in these cells by downregulating expression of bunched. Reduced bunched function restores A359 expression in cells that lack the Smad protein MAD; ectopic expression of BUNCHED suppresses A359 expression in this region. Importantly, reduction of bunched function leads to an expansion of the operculum and loss of the collar at its boundary. Third, EGF signaling upregulates expression of bunched. We previously demonstrated that the bunched expression pattern requires the EGF receptor ligand GURKEN. Here we show that activated EGF receptor is sufficient to induce ectopic bunched expression. Thus, the balance of DPP and EGF signals sets the boundary of bunched expression. We propose that the juxtaposition of cells with high and low BUNCHED activity organizes a sharp boundary for the operculum fate.


Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3871-3880 ◽  
Author(s):  
A.M. Queenan ◽  
A. Ghabrial ◽  
T. Schupbach

The Drosophila gene torpedo/Egfr (top/Egfr) encodes a homolog of the vertebrate Epidermal Growth Factor receptor. This receptor is required several times during the life cycle of the fly for the transmisson of developmental cues. During oogenesis, Top/Egfr activation is required for the establishment of the dorsal/ventral axis of the egg and the embryo. To examine how ectopic Top/Egfr activation affects cell fate determination, we constructed an activated version of the protein. Expression of this activated form (lambda top) in the follicle cells of the ovary induces dorsal cell fates in both the follicular epithelium and the embryo. Different levels of expression resulted in different dorsal follicle cell fates. These dorsal cell fates were expanded in the anterior, but not the posterior, of the egg, even in cases where all the follicle cells covering the oocyte expressed lambda top. The expression of genes known to respond to top/Egfr activation, argos (aos), kekkon1 (kek 1) and rhomboid (rho), was also expanded in the presence of the lambda top construct. When lambda top was expressed in all the follicle cells covering the oocyte, kek 1 and argos expression was induced in follicle cells all along the anterior/posterior axis of the egg chamber. In contrast, rho RNA expression was only activated in the anterior of the egg chamber. These data indicate that the response to Top/Egfr signaling is regulated by an anterior/posterior prepattern in the follicle cells. Expression of lambda top in the entire follicular epithelium resulted in an embryo dorsalized along the entire anterior/posterior axis. Expression of lambda top in anterior or posterior subpopulations of follicle cells resulted in regionally autonomous dorsalization of the embryos. This result indicates that subpopulations of follicle cells along the anterior/posterior axis can respond to Top/Egfr activation independently of one another.


2003 ◽  
Vol 23 (6) ◽  
pp. 2123-2134 ◽  
Author(s):  
Pelin Cayirlioglu ◽  
William O. Ward ◽  
S. Catherine Silver Key ◽  
Robert J. Duronio

ABSTRACT Individual members of the E2F/DP protein family control cell cycle progression by acting predominantly as an activator or repressor of transcription. In Drosophila melanogaster the E2f1, E2f2, Dp, and Rbf1 genes all contribute to replication control in ovarian follicle cells, which become 16C polyploid and subsequently undergo chorion gene amplification late in oogenesis. Mutation of E2f2, Dp, or Rbf1 causes ectopic DNA replication throughout the follicle cell genome during gene amplification cycles. Here we show by both reverse transcription-PCR and DNA microarray analysis that the transcripts of prereplication complex (pre-RC) genes are elevated compared to the wild type in E2f2, Dp, and Rbf1 mutant follicle cells. For some genes the magnitude of this transcriptional derepression is greater in Rbf1 than in E2f2 mutants. These differences correlate with differences in the magnitude of the replication defects in follicle cells, which attain an inappropriate 32C DNA content in both Rbf1 and Dp mutants but not in E2f2 mutants. The ectopic genomic replication of E2f2 mutant follicle cells can be suppressed by reducing the Orc2, Orc5, or Mcm2 gene dose by half, indicating that small changes in pre-RC gene expression can affect DNA synthesis in these cells. We conclude that RBF1 forms complexes with both E2F1/DP and E2F2/DP that cooperate to repress the expression of pre-RC genes, which helps confine DNA synthesis to sites of gene amplification. In contrast, E2F1 and E2F2 repressors function redundantly for some genes in the embryo. Thus, the relative functional contributions of E2F1 and E2F2 to gene expression and cell cycle control depends on the developmental context.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 207-217 ◽  
Author(s):  
E Johnson ◽  
S Wayne ◽  
R Nagoshi

Abstract Phenotypic and genetic analyses demonstrate that fs (1) Yb activity is required in the soma for the development of a subset of ovarian follicle cells and to support later stages of egg maturation. Mutations in fs (1) Yb cause a range of ovarian phenotypes, from the improper segregation of egg chambers to abnormal dorsal appendage formation. The mutant phenotypes associated with fs (1) Yb are very similar to the ovarian aberrations produced by temperature-sensitive alleles of Notch and Delta. Possible functional or regulatory interactions between fs (1) Yb and Notch are suggested by genetic studies. A duplication of the Notch locus partially suppresses the female-sterility caused by fs (1) Yb mutations, while reducing Notch dosage makes the fs (1) Yb mutant phenotype more severe. In addition, fs (1) Yb alleles also interact with genes that are known to act with or regulate Notch activity, including Delta, daughterless, and mastermind. However, differences between the mutant ovarian phenotype of fs (1) Yb and that of Notch or Delta indicate that the genes do not have completely overlapping functions in the ovary. We propose that fs (1) Yb acts as an ovary-specific factor that determines follicle cell fate.


Sign in / Sign up

Export Citation Format

Share Document