GAP-43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration

Development ◽  
2001 ◽  
Vol 128 (7) ◽  
pp. 1175-1182 ◽  
Author(s):  
A.J. Udvadia ◽  
R.W. Koster ◽  
J.H. Skene

A pivotal event in neural development is the point at which differentiating neurons become competent to extend long axons. Initiation of axon growth is equally critical for regeneration. Yet we have a limited understanding of the signaling pathways that regulate the capacity for axon growth during either development or regeneration. Expression of a number of genes encoding growth associated proteins (GAPs) accompanies both developmental and regenerative axon growth and has led to the suggestion that the same signaling pathways regulate both modes of axon growth. We have tested this possibility by asking whether a promoter fragment from a well characterized GAP gene, GAP-43, is sufficient to activate expression in both developing and regenerating neurons. We generated stable lines of transgenic zebrafish that express green fluorescent protein (GFP) under regulation of a 1 kb fragment of the rat GAP-43 gene, a fragment that contains a number of evolutionarily conserved elements. Analysis of GFP expression in these lines confirms that the rat 1 kb region can direct growth-associated expression of the transgene in differentiating neurons that extend long axons. Furthermore, this region supports developmental down-regulation of transgene expression which, like the endogenous gene, coincides with neuronal maturation. Strikingly, these same sequences are insufficient for directing expression in regenerating neurons. This finding suggests that signaling pathways regulating axon growth during development and regeneration are not the same. While these results do not exclude the possibility that pathways involved in developmental axon growth are also active in regenerative growth, they do indicate that signaling pathway(s) controlling activation of the GAP-43 gene after CNS injury differ in at least one key component from the signals controlling essential features of developmental axon growth.

Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


2012 ◽  
Vol 78 (15) ◽  
pp. 5060-5069 ◽  
Author(s):  
Morten T. Rybtke ◽  
Bradley R. Borlee ◽  
Keiji Murakami ◽  
Yasuhiko Irie ◽  
Morten Hentzer ◽  
...  

ABSTRACTThe increased tolerance toward the host immune system and antibiotics displayed by biofilm-formingPseudomonas aeruginosaand other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP inP. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsivecdrApromoter to genes encoding green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP inP. aeruginosastrains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment ofP. aeruginosawith the phosphodiesterase inducer nitric oxide. Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathogenicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology ofP. aeruginosa.


Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1953-1960 ◽  
Author(s):  
M.C. Halloran ◽  
M. Sato-Maeda ◽  
J.T. Warren ◽  
F. Su ◽  
Z. Lele ◽  
...  

Over the past few years, a number of studies have described the generation of transgenic lines of zebrafish in which expression of reporters was driven by a variety of promoters. These lines opened up the real possibility that transgenics could be used to complement the genetic analysis of zebrafish development. Transgenic lines in which the expression of genes can be regulated both in space and time would be especially useful. Therefore, we have cloned the zebrafish promoter for the inducible hsp70 gene and made stable transgenic lines of zebrafish that express the reporter green fluorescent protein gene under the control of a hsp70 promoter. At normal temperatures, green fluorescent protein is not detectable in transgenic embryos with the exception of the lens, but is robustly expressed throughout the embryo following an increase in ambient temperature. Furthermore, we have taken advantage of the accessibility and optical clarity of the embryos to express green fluorescent protein in individual cells by focussing a sublethal laser microbeam onto them. The targeted cells appear to develop normally: cells migrate normally, neurons project axons that follow normal pathways, and progenitor cells divide and give rise to normal progeny cells. By generating other transgenic lines in which the hsp70 promoter regulates genes of interest, it should be possible to examine the in vivo activity of the gene products by laser-inducing specific cells to express them in zebrafish embryos. As a first test, we laser-induced single muscle cells to make zebrafish Sema3A1, a semaphorin that is repulsive for specific growth cones, in a hsp70-sema3A1 transgenic line of zebrafish and found that extension by the motor axons was retarded by the induced muscle.


2009 ◽  
Vol 22 (1) ◽  
pp. 73-85 ◽  
Author(s):  
Amit Das ◽  
Nandini Rangaraj ◽  
Ramesh V. Sonti

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. We have used enhanced green fluorescent protein-tagged X. oryzae pv. oryzae cells in conjunction with confocal microscopy to monitor the role of several adhesin-like functions in bacterial adhesion to leaf surface and early stages of leaf entry. Mutations in genes encoding either the Xanthomonas adhesin-like protein A (XadA) or its paralog, Xanthomonas adhesin-like protein B (XadB), as well as the X. oryzae pv. oryzae homolog of Yersinia autotransporter-like protein H (YapH), exhibit deficiencies in leaf attachment or entry. A mutation in the X. oryzae pv. oryzae pilQ gene, which is predicted to encode the type IV pilus secretin, appears to have no effect on leaf attachment or entry. The xadA– mutant is deficient in the ability to cause disease following surface inoculation while the XadB, YapH, and PilQ functions are less important than XadA for this process. The xadA– and xadB– mutants have no effect on virulence following wound inoculation whereas the yapH– and pilQ– mutants are always virulence deficient following wound inoculation. Overall, these results indicate that multiple adhesin-like functions are involved in promoting virulence of X. oryzae pv. oryzae, with preferential involvement of individual functions at different stages of the disease process.


2003 ◽  
Vol 77 (2) ◽  
pp. 1329-1336 ◽  
Author(s):  
Etienne Bucher ◽  
Titia Sijen ◽  
Peter de Haan ◽  
Rob Goldbach ◽  
Marcel Prins

ABSTRACT Posttranscriptional silencing of a green fluorescent protein (GFP) transgene in Nicotiana benthamiana plants was suppressed when these plants were infected with Tomato spotted wilt virus (TSWV), a plant-infecting member of the Bunyaviridae. Infection with TSWV resulted in complete reactivation of GFP expression, similar to the case for Potato virus Y, but distinct from that for Cucumber mosaic virus, two viruses known to carry genes encoding silencing suppressor proteins. Agrobacterium-based leaf injections with individual TSWV genes identified the NSS gene to be responsible for the RNA silencing-suppressing activity displayed by this virus. The absence of short interfering RNAs in NSS-expressing leaf sectors suggests that the tospoviral NSS protein interferes with the intrinsic RNA silencing present in plants. Suppression of RNA silencing was also observed when the NS3 protein of the Rice hoja blanca tenuivirus, a nonenveloped negative-strand virus, was expressed. These results indicate that plant-infecting negative-strand RNA viruses carry a gene for a suppressor of RNA silencing.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 434
Author(s):  
Alison Mbekeani ◽  
Will Stanley ◽  
Vishal Kalel ◽  
Noa Dahan ◽  
Einat Zalckvar ◽  
...  

Peroxisomes are central to eukaryotic metabolism, including the oxidation of fatty acids—which subsequently provide an important source of metabolic energy—and in the biosynthesis of cholesterol and plasmalogens. However, the presence and nature of peroxisomes in the parasitic apicomplexan protozoa remains controversial. A survey of the available genomes revealed that genes encoding peroxisome biogenesis factors, so-called peroxins (Pex), are only present in a subset of these parasites, the coccidia. The basic principle of peroxisomal protein import is evolutionarily conserved, proteins harbouring a peroxisomal-targeting signal 1 (PTS1) interact in the cytosol with the shuttling receptor Pex5 and are then imported into the peroxisome via the membrane-bound protein complex formed by Pex13 and Pex14. Surprisingly, whilst Pex5 is clearly identifiable, Pex13 and, perhaps, Pex14 are apparently absent from the coccidian genomes. To investigate the functionality of the PTS1 import mechanism in these parasites, expression of Pex5 from the model coccidian Toxoplasma gondii was shown to rescue the import defect of Pex5-deleted Saccharomyces cerevisiae. In support of these data, green fluorescent protein (GFP) bearing the enhanced (e)PTS1 known to efficiently localise to peroxisomes in yeast, localised to peroxisome-like bodies when expressed in Toxoplasma. Furthermore, the PTS1-binding domain of Pex5 and a PTS1 ligand from the putatively peroxisome-localised Toxoplasma sterol carrier protein (SCP2) were shown to interact in vitro. Taken together, these data demonstrate that the Pex5–PTS1 interaction is functional in the coccidia and indicate that a nonconventional peroxisomal import mechanism may operate in the absence of Pex13 and Pex14.


Genome ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 722-730 ◽  
Author(s):  
Daolin Fu ◽  
Yanmei Xiao ◽  
Subbaratnam Muthukrishnan ◽  
George H Liang

A dual-marker combination, manA-gfp, comprising 2 independent expression cassettes of genes encoding an Escherichia coli phosphomannose isomerase (PMI) and a synthetic green fluorescent protein (GFP), was incorporated into the binary vector pPZP201. Agrobacterium tumefaciens-mediated transfer was used to introduce the manA-gfp into the mature-seed derived calli of Agrostis stoloifera L. 'Crenshaw'. The putative transgenic bentgrass calli were screened in Murashige and Skoog medium containing 15 g mannose/L, in conjunction with a visual examination of the GFP expression with a fluorescence stereomicroscope. Calli with GFP fluorescence grew well on the mannose selection media. A total of 24 transgenic plants derived from a single piece of callus lobe were studied for the genomic integration, expression, and function of the transgene. Genomic integration of the dual markers manA and gfp was confirmed by Southern blotting analysis, and the expression of manA also was validated by using PMI-specific antiserum. The inheritance and expression of the dual marker, manA-gfp, was demonstrated in the T1 generation. This study on the environmentally friendly markers further documented the feasibility of using alternative selection methods without using herbicide- or antibiotic-resistance markers.Key words: bentgrass, Agrobacterium tumefaciens-mediated transformation, chlorophenol red assay, phosphomannose isomerase (PMI).


Sign in / Sign up

Export Citation Format

Share Document