Connecting Hh, Dpp and EGF signalling in patterning of theDrosophilawing; the pivotal role ofcollier/knotin the AP organiser

Development ◽  
2002 ◽  
Vol 129 (18) ◽  
pp. 4261-4269 ◽  
Author(s):  
Michèle Crozatier ◽  
Bruno Glise ◽  
Alain Vincent

Hedgehog (Hh) signalling from posterior (P) to anterior (A) cells is the primary determinant of AP polarity in the limb field in insects and vertebrates. Hh acts in part by inducing expression of Decapentaplegic (Dpp), but how Hh and Dpp together pattern the central region of the Drosophila wing remains largely unknown. We have re-examined the role played by Collier (Col), a dose-dependent Hh target activated in cells along the AP boundary, the AP organiser in the imaginal wing disc. We found that col mutant wings are smaller than wild type and lack L4 vein, in addition to missing the L3-L4 intervein and mis-positioning of the anterior L3 vein. We link these phenotypes to col requirement for the local upregulation of both emc and N, two genes involved in the control of cell proliferation, the EGFR ligand Vein and the intervein determination gene blistered. We further show that attenuation of Dpp signalling in the AP organiser is also col dependent and, in conjunction with Vein upregulation, required for formation of L4 vein. A model recapitulating the molecular interplay between the Hh, Dpp and EGF signalling pathways in the wing AP organiser is presented.

Development ◽  
1985 ◽  
Vol 85 (1) ◽  
pp. 95-109
Author(s):  
Leslie Dale ◽  
Mary Bownes

When complementary fragments of the imaginal wing disc of Drosophila are cultured for several days prior to inducing metamorphosis, usually one fragment will regenerate while the second duplicates. It has been proposed that wound healing plays an important part in disc regulation by initiating cell proliferation and determining the mode of regulation (regeneration/duplication). To test the latter proposal 15 types of wing disc fragments were examined for variability both in the mode of wound healing and the mode of pattern regulation. Two modes of wound healing were observed, regular—the two wound edges heal with each other, and irregular—each wound edge heals with itself. When cultured separately fragments that healed regularly regenerated, while fragments that healed irregularly duplicated. This suggests that the mode of wound healing determines the mode of pattern regulation.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1369-1376 ◽  
Author(s):  
Myriam Zecca ◽  
Gary Struhl

The subdivision of the Drosophila wing imaginal disc into dorsoventral (DV) compartments and limb-body wall (wing-notum) primordia depends on Epidermal Growth Factor Receptor (EGFR) signaling, which heritably activates apterous (ap) in D compartment cells and maintains Iroquois Complex (Iro-C) gene expression in prospective notum cells. We examine the source, identity and mode of action of the EGFR ligand(s) that specify these subdivisions. Of the three known ligands for the Drosophila EGFR, only Vein (Vn), but not Spitz or Gurken, is required for wing disc development. We show that Vn activity is required specifically in the dorsoproximal region of the wing disc for ap and Iro-C gene expression. However, ectopic expression of Vn in other locations does not reorganize ap or Iro-C gene expression. Hence, Vn appears to play a permissive rather than an instructive role in organizing the DV and wing-notum segregations, implying the existance of other localized factors that control where Vn-EGFR signaling is effective. After ap is heritably activated, the level of EGFR activity declines in D compartment cells as they proliferate and move ventrally, away from the source of the instructive ligand. We present evidence that this reduction is necessary for D and V compartment cells to interact along the compartment boundary to induce signals, like Wingless (Wg), which organize the subsequent growth and differentiation of the wing primordium.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3130-3130
Author(s):  
Amanda Lance ◽  
Rajeswaran Mani ◽  
Sara L. Seegers ◽  
Belinda R Avalos ◽  
Lawrence J Druhan

Abstract The granulocyte colony stimulating factor receptor (CSF3R) is a critical regulator of neutrophil production with multiple alternatively spliced variants. The truncated CSF3R-V4 splice variant confers enhanced growth signals, and changes in its expression levels relative to the canonical V1 (wild type) isoform have been implicated in chemotherapy resistance and relapse of AML. We previously demonstrated that the CSF3R-V3 isoform, a variant of V1 with an insertion in the cytoplasmic domain, produces hypoproliferative signals in lymphoid cells in response to G-CSF. We also reported that expression of all three splice variants is significantly altered in AML, suggesting that aberrant CSF3R splicing is involved in the pathogenesis of some myeloid malignancies. The functional signaling capabilities of the different CSF3R isoforms in regulating granulopoiesis remain largely unknown. Herein, we describe a novel myeloid model system and show that the V3 and V4 isoforms generate opposing proliferative signals without effects on myeloid cell differentiation. ER-HoxB8 cells are murine bone marrow progenitor cells ectopically expressing an ER-HoxB8 fusion protein, and in the presence of estradiol (E2) the fusion protein dimerizes producing a functional HoxB8 dimer which enforces self-renewal. Thus, in the presence of E2 these cells continually proliferate; however, when E2 is withdrawn they differentiate into mature granulocytes. Addition of G-CSF to culture medium of E2 ER-HoxB8 cells increases progenitor cell proliferation in a dose dependent manner (Figure 1A). Using CRISPR/Cas9, we knocked-out the endogenous murine Csf3r. As expected, ER-HoxB8-Csf3r-/- cells still produced mature neutrophils with E2 withdrawal and no increase in differentiation or proliferation of the knock-out cells (KO) was observed in response to G-CSF. The functional behavior of our ER-HoxB8-Csf3r-/- cells recapitulates the published phenotype of the Csf3r knock-out mouse, which exhibits severe neutropenia but has circulating neutrophils. ER-HoxB8 KO cells were transduced with human CSF3R splice variants and expression confirmed by immunoblot analysis using splice-variant specific antibodies. KO cells expressing the CSF3R-V3 demonstrated a hypoproliferative response to G-CSF with an ~40-fold increase in the EC50 relative to cells expressing CSF3R-V1 (Figure 1B), confirming our prior observations in the lymphoid BaF3 cell line. In contrast, KO cells expressing the truncated CSF3R-V4 variant hyperproliferated in response to G-CSF consistent with our previously published data in lymphoid cells. Using multi-color flow cytometry with antibodies against CD117, CD11b, and Ly6G to identify progenitor, intermediately differentiated cells (NeuP), and mature neutrophils, we found that KO cells (like parental ER-HoxB8 cells) produced significant numbers of CD11b+/LyGG- NeuP cells upon E2 withdrawal and addition of G-CSF had no effect on differentiation. Transduction of ER-HoxB8 KO cells with the wild type human CSF3R-V1 restored their capacity to respond to G-CSF in a dose dependent manner. KO cells transduced with CSF3R-V3 displayed normal production of NeuP cells with E2 withdrawal, and addition of G-CSF produced a substantial increase in the numbers of mature neutrophils (CD11b+, Ly6G+) after 5 days in culture, relative to KO cells (Figure 2C). Thus, we have demonstrated that CSF3R-V3 is able to support the production of fully mature neutrophils. Notably, a G-CSF induced increase in the numbers of mature neutrophils was also evident in CSF3R-V4 transduced cells. Previous work by others indicated that CSF3R-V4 was not able to drive myeloid differentiation. We hypothesize that this difference in phenotype is due to a V4-dependent hyperproliferation of the neutrophil progenitors. On-going work is focused on the determination of the specific effects these CSF3R splice variants have on each stage of granulopoiesis. In conclusion, using our novel engineered CSF3R model system, we confirm differential effects of CSF3R splice variants on myeloid cell proliferation and show sustained differentiation capacity of each isoform. Additional studies using this model system provide the opportunity for identification of new therapeutic targets for treatment of disorders of granulocyte production. Figure 1 Figure 1. Disclosures Avalos: JUNO: Membership on an entity's Board of Directors or advisory committees.


Development ◽  
1997 ◽  
Vol 124 (15) ◽  
pp. 2973-2981 ◽  
Author(s):  
R.J. Fleming ◽  
Y. Gu ◽  
N.A. Hukriede

In the developing imaginal wing disc of Drosophila, cells at the dorsoventral boundary require localized Notch activity for specification of the wing margin. The Notch ligands Serrate and Delta are required on opposite sides of the presumptive wing margin and, even though activated forms of Notch generate responses on both sides of the dorsoventral boundary, each ligand generates a compartment-specific response. In this report we demonstrate that Serrate, which is expressed in the dorsal compartment, does not signal in the dorsal regions due to the action of the fringe gene product. Using ectopic expression, we show that regulation of Serrate by fringe occurs at the level of protein and not Serrate transcription. Furthermore, replacement of the N-terminal region of Serrate with the corresponding region of Delta abolishes the ability of fringe to regulate Serrate without altering Serrate-specific signaling.


2017 ◽  
Author(s):  
Qinfeng Wu ◽  
Pavel A. Brodskiy ◽  
Francisco Huizar ◽  
Jamison J. Jangula ◽  
Cody Narciso ◽  
...  

AbstractRecently, organ-scale intercellular Ca2+ transients (ICTs) were reported in the Drosophila wing disc. However, the functional in vivo significance of ICTs remains largely unknown. Here we demonstrate the in vivo relevance of intercellular Ca2+ signaling and its impact on wing development. We report that Ca2+ signaling in vivo decreases as wing discs mature. Ca2+ signaling ex vivo responds to fly extract in a dose-dependent manner. This suggests ICTs occur in vivo due to chemical stimulus that varies in concentration during development. RNAi mediated inhibition of genes required for ICTs results in defects in the size, shape, and vein patterning of adult wings. It also leads to reduction or elimination of in vivo Ca2+ transients. Further, perturbations to the extracellular matrix along the basal side of the wing disc stimulates intercellular Ca2+ waves. This is the first identified chemically defined, non-wounding stimulus of ICTs. Together, these results point toward specific in vivo functions of intercellular Ca2+ signaling to mediate mechanical stress dissipation and ensure robust patterning during development.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 245-245
Author(s):  
Stephen M Ansell ◽  
Lucy S. Hodge ◽  
Frank Secreto ◽  
Michelle Manske ◽  
Esteban Braggio ◽  
...  

Abstract Massively parallel sequencing analyses have revealed a common mutation within the MYD88 gene (MYD88L265P) occurring at high frequencies in many non-Hodgkin lymphomas (NHL) including the rare lymphoplasmacytic lymphoma, Waldenström’s macroglobulinemia (WM). Using whole exome sequencing, Sanger sequencing and allele-specific PCR, we validate the initial studies and detect the MYD88L265P mutation in the tumor genome of 97% of WM patients analyzed (n=39). MYD88L265P was detected at lower frequencies in other indolent lymphomas including LPL (0%), MALT (4%), nodal MZL (5%) and splenic MZL (8%); all but one MYD88L265P was heterozygous. Due to the high frequency of MYD88 mutation in WM and other NHL, and its known effects on malignant B cell survival, therapeutic targeting of MYD88 signaling pathways may be useful clinically. However, while the effects of MYD88L265P on the activity of IRAK1/4 and NF-κB are have been studied previously, we are lacking a thorough characterization of the role of intermediary signaling proteins such as TRAF6 and TAK1 on the biology of MYD88L265P-expressing B cells. A better understanding of the proteins involved in MYD88L265P signaling may lead to the development of more targeted and effective therapeutic approaches. In an attempt to identify MYD88L265P –specific therapeutic targets we first wanted to characterize the role of intermediary signaling proteins that facilitate the downstream activation of NF-κB. Upon activation of TLRs or IL-1b receptors, MYD88 forms a homodimer and recruits IRAK1/4 and TRAF6 into a complex resulting in association and phosphorylation of TAK1 followed by activation of NF-κB. We monitored the formation of a complex comprised of MYD88, IRAK1, IRAK4 and TRAF6 and immunoprecipitation of either endogenous IRAK4 or IRAK1 revealed constitutive association of IRAK with TRAF6 and MYD88L265P. To assess if the formation of a MYD88L265P/IRAK/TRAF6 complex results in downstream activation of TAK1, constitutive TAK1 phosphorylation was measured and detected in all three cell lines that express MYD88L265P. An association between TAK1 and TRAF6, another measure of TAK1 activation, was also detectable. When a similar analysis of TAK1 was performed in DLBCL cells expressing wild-type MYD88, no phosphorylation of TAK1 was detected, nor was TAK1 associated with TRAF6. IRAK1, IRAK4, TAK1, TRAF6, and MYD88 were expressed at similar levels in all cell lines studied and therefore did not contribute the differences in MYD88 complex formation observed between cell lines. These studies were further confirmed using HEK 293T cells that were transduced with either a vector control plasmid or HA-tagged MYD88WT or MYD88L265P expression plasmids. Together, these studies suggest that MYD88L265P forms a complex with IRAK and TRAF6 resulting in constitutive activation of TAK1 and NF-κB. To confirm the significance of TAK1-mediated MYD88L265P signaling on lymphoma cell growth, the effect of the selective TAK1 inhibitor, (5Z)-7-Oxozeaenol, on cell proliferation was tested. All MYD88L265P-expressing cell lines were sensitive to TAK1 inhibition in a dose-dependent manner (0-10 μM). In contrast, NHL cells expressing MYD88WT were found to be insensitive to TAK1 inhibition. We next tested the impact of the TAK1 inhibitor on a MYD88L265P positive WM patient sample. Similar to what was seen in the WM cell lines, the TAK1 inhibitor inhibited WM cell growth and survival in a dose dependent manner. Additionally, the TAK1 inhibitor significantly reduced the level of IL-10 secreted by each of the cell lines. Together, these data suggest that MYD88L265P drives cell proliferation and cytokine secretion through a TAK1-dependent mechanism. In conclusion, we are the first to validate by NGS in a large patient cohort the high prevalence and specificity of MYD88L265P in WM. Cells harboring the L265P mutation but not wild-type MYD88 exhibit constitutive signaling leading to the hyperactivation of NF-κB. We have established the role of TAK1 as an integral component of MYD88L265P signaling in both WM and DLBCL cell. Our data suggest that targeting TAK1 clinically may be an effective strategy for the treatment of WM and other lymphomas driven by MYD88L265P signaling. Disclosures: Fonseca: millennium: Consultancy; amgen: Consultancy; Binding site: Consultancy; onyx: Consultancy; medtronic: Consultancy; Genzyme: Consultancy; Otsuka: Consultancy; Celgene: Consultancy; lilly: Consultancy; Onyx: Research Funding; cylene: Research Funding.


Development ◽  
2000 ◽  
Vol 127 (11) ◽  
pp. 2383-2393 ◽  
Author(s):  
A. Baonza ◽  
J.F. de Celis ◽  
A. Garcia-Bellido

The function of extramacrochaetae is required during the development of the Drosophila wing in processes such as cell proliferation and vein differentiation. extramacrochaetae encodes a transcription factor of the HLH family, but unlike other members of this family, Extramacrochaetae lacks the basic region that is involved in interaction with DNA. Some phenotypes caused by extramacrochaetae in the wing are similar to those observed when Notch signalling is compromised. Furthermore, maximal levels of extramacrochaetae expression in the wing disc are restricted to places where Notch activity is higher, suggesting that extramacrochaetae could mediate some aspects of Notch signalling during wing development. We have studied the relationships between extramacrochaetae and Notch in wing development, with emphasis on the processes of vein formation and cell proliferation. We observe strong genetic interaction between extramacrochaetae and different components of the Notch signalling pathway, suggesting a functional relationship between them. We show that the higher level of extramacrochaetae expression coincides with the domain of expression of Notch and its downstream gene Enhancer of split-m(beta). The expression of extramacrochaetae at the dorso/ventral boundary and in boundary cells between veins and interveins depends on Notch activity. We propose that at least during vein differentiation and wing margin formation, extramacrochaetae is regulated by Notch and collaborates with other Notch-downstream genes such as Enhancer of split-m(beta).


Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


Sign in / Sign up

Export Citation Format

Share Document