scholarly journals BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9/bcl-2 transcription

Development ◽  
2021 ◽  
Author(s):  
Hang-Shiang Jiang ◽  
Piya Ghose ◽  
Hsiao-Fen Han ◽  
Yun-Zhe Wu ◽  
Ya-Yin Tsai ◽  
...  

Programmed cell death (PCD) is a common cell fate in metazoan development. PCD effectors are extensively studied, but how they are temporally regulated is less understood. Here we report a mechanism controlling tail-spike cell death onset during C. elegans development. We show that the Zn-finger transcription factor BLMP-1/Blimp1, which controls larval development timing, also regulates embryonic tail-spike cell death initiation. BLMP-1 functions upstream of CED-9/BCL-2 and in parallel to DRE-1/FBXO11, another CED-9 and tail-spike cell death regulator. BLMP-1 expression is detected in the tail-spike cell shortly after the cell is born, and blmp-1 mutations promote ced-9-dependent tail-spike cell survival. BLMP-1 binds ced-9/bcl-2 gene regulatory sequences, and inhibits ced-9 transcription just before cell-death onset. BLMP-1 and DRE-1 function together to regulate developmental timing, and their mammalian homologs regulate B-lymphocyte fate. Our results, therefore, identify roles for developmental timing genes in cell-death initiation, and suggest conservation of these functions.

Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1011-1022 ◽  
Author(s):  
T.L. Gumienny ◽  
E. Lambie ◽  
E. Hartwieg ◽  
H.R. Horvitz ◽  
M.O. Hengartner

Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.


2019 ◽  
Author(s):  
Taylor N. Medwig-Kinney ◽  
Jayson J. Smith ◽  
Nicholas J. Palmisano ◽  
Sujata Tank ◽  
Wan Zhang ◽  
...  

ABSTRACTCellular invasion is a key part of development, immunity, and disease. Using thein vivomodel ofC. elegansanchor cell invasion, we characterize the gene regulatory network that promotes invasive differentiation. The anchor cell is initially specified in a stochastic cell fate decision mediated by Notch signaling. Previous research has identified four conserved transcription factors,fos-1a(Fos),egl-43(EVI1/MEL),hlh-2(E/Daughterless) andnhr-67(NR2E1/TLX), that mediate anchor cell specification and/or invasive differentiation. Connections between these transcription factors and the underlying cell biology that they regulate is poorly understood. Here, using genome editing and RNA interference, we examine transcription factor interactions prior to and after anchor cell specification. During invasion we identify thategl-43,hlh-2, andnhr-67function together in a type I coherent feed-forward loop with positive feedback. Conversely, prior to specification, these transcription factors function independent of one another to regulate LIN-12 (Notch) activity. Together, these results demonstrate that, although the same transcription factors can function in fate specification and differentiated cell behavior, a gene regulatory network can be rapidly re-wired to reinforce a post-mitotic, pro-invasive state.SUMMARY STATEMENTBasement membrane invasion by theC. elegansanchor cell is coordinated by a dynamic gene regulatory network encompassing cell cycle dependent and independent sub-circuits.


2016 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

2016 ◽  
Vol 23 (12) ◽  
pp. 1985-1994 ◽  
Author(s):  
Jennifer A Malin ◽  
Maxime J Kinet ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Shai Shaham

Development ◽  
1990 ◽  
Vol 108 (3) ◽  
pp. 365-389 ◽  
Author(s):  
E.H. Davidson

Embryonic processes in the nematode C. elegans, the gastropod mollusc Ilyanassa, the dipteran Drosophila, the echinoid Strongylocentrotus purpuratus, the ascidian Ciona, the anuran Xenopus, the teleost Brachydanio and mouse are compared with respect to a series of parameters such as invariant or variable cleavage, the means by which the embryonic axes are set up, egg anisotropies and reliance on conditional or on autonomous specification processes. A molecular interpretation of these modes of specification of cell fate in the embryo is proposed, in terms of spatial modifications of gene regulatory factors. On this basis, classically defined phenomena such as regulative development and cytoplasmic localization can be interpreted at a mechanistic level, and the enormous differences between different forms of embryogenesis in the Animal Kingdom can be considered within a common mechanistic framework. Differential spatial expression of histospecific genes is considered in terms of the structure of the gene regulatory network that will be required in embryos that utilize cell-cell interaction, autonomous vs conditional specification and maternal spatial information to differing extents. It is concluded that the regulatory architectures according to which the programs of gene expression are organized are special to each form of development, and that common regulatory principles are to be found only at lower levels, such as those at which the control regions of histospecific structural genes operate.


Author(s):  
N. T. Chartier ◽  
A. Mukherjee ◽  
J. Pfanzelter ◽  
S. Fürthauer ◽  
B. T. Larson ◽  
...  

AbstractOocytes are large and resourceful. During oogenesis some germ cells grow, typically at the expense of others that undergo apoptosis. How germ cells are selected to live or die out of a homogeneous population remains unclear. Here we show that this cell fate decision in C. elegans is mechanical and related to tissue hydraulics. Germ cells become inflated when the pressure inside them is lower than in the common cytoplasmic pool. This condition triggers a hydraulic instability which amplifies volume differences and causes some germ cells to grow and others to shrink. Shrinking germ cells are extruded and die, as we demonstrate by reducing germ cell volumes via thermoviscous pumping. Together, this reveals a robust mechanism of mechanochemical cell fate decision making in the germline.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4275-4282 ◽  
Author(s):  
K. Fitzgerald ◽  
I. Greenwald

Ligands of the Delta/Serrate/lag-2 (DSL) family and their receptors, members of the lin-12/Notch family, mediate cell-cell interactions that specify cell fate in invertebrates and vertebrates. In C. elegans, two DSL genes, lag-2 and apx-1, influence different cell fate decisions during development. Here we show that APX-1 can fully substitute for LAG-2 when expressed under the control of lag-2 regulatory sequences. In addition, we demonstrate that truncated forms lacking the transmembrane and intracellular domains of both LAG-2 and APX-1 can also substitute for endogenous lag-2 activity. Moreover, we provide evidence that these truncated forms are secreted and able to activate LIN-12 and GLP-1 ectopically. Finally, we show that expression of a secreted DSL domain alone may enhance endogenous LAG-2 signalling. Our data suggest ways that activated forms of DSL ligands in other systems may be created.


Sign in / Sign up

Export Citation Format

Share Document